THE 27th INTERNATIONAL CONFERENCE ON MINIATURIZED SYSTEMS FOR CHEMISTRY AND

PROGRAM

CONFERENCE CHAIRS

Zbigniew Brzózka

Warsaw University of Technology POLAND

Elżbieta Jastrzębska Warsaw University of Technology POLAND

SUPPORTED BY

Warsaw University of Technology

UNIVERSITY OF SILESIA IN KATOWICE

SPONSORED BY

Chemical and Biological Microsystems Society

TABLE OF

Welcome Letter	2
Special Focus Session	5
Keynote Speakers	6
Plenary Speakers	9

TECHNICAL PROGRAM

Technical Program Information 1	11
Sunday Program1	2
Monday Program1	4
Tuesday Program 2	22
Wednesday Program 3	32
Thursday Program4	10
Poster Presentations	15
Late News Poster Presentations 11	4
MicroTAS 2024 Announcement Inside Back Cove	er

WELCOME LETTER

Welcome to the 27th International Conference on Miniaturized Systems for Chemistry and Life Sciences

Welcome to MicroTAS 2023, the 27th International Conference on Miniaturized Systems for Chemistry and Life Sciences, which represents a returning of our community's flagship scientific conference as an in-person event. Following on-line and hybrid versions of the conference in Asia (Hangzhou, China in 2022), America (Palm Springs, USA in 2021) and fully online/virtual in 2020, we are very pleased to welcome you this year in Katowice, Poland. Katowice is the heart of Silesia region and in the past, Silesia was known mainly for coal mines, heavy industry, agriculture, and forging. Today, it is one of the national leaders in innovation, new technologies, and green transformation. Katowice is an academic, cultural, and sports centre and we hope you enjoy your time in the city.

In redesigning several aspects of MicroTAS, we have been guided by a core mission: (1) to deliver a high-quality scientific program; (2) to create a forum for cutting edge and even unpublished work; (3) to facilitate scientific engagement across a spectrum of subject areas; (4) to foster connections among researchers of all career stages from across the international community; and (5) to grow and strengthen our community by including emerging scientific directions and diverse researchers.

We are pleased to welcome a community of almost 1,000 individuals to this "normal" MicroTAS, that continues to be the premier international forum for reporting the latest research results in microfluidics and lab-on-a-chip technologies, including aspects of microfabrication, nanotechnology, device integration, materials and surfaces, analysis and synthesis, and sensing and detection in the fields of life sciences and chemistry.

Over the last three years, the pandemic has prevented the safe organization of traditional forms of our conference, based on stationary presentations, direct scientific discussion, and participation in accompanying events. We thank you each for joining us and sharing your research here. It is you, our community, that makes MicroTAS the world's premier microfluidics conference.

At the heart of the meeting is the Technical Program. This year, abstract submissions were solicited within seven core topical areas that have been selected to reflect the scope of our growing field, spanning from fundamental physics and fabrication through sensors and detection to applications of microfluidic technology. Today, microfluidic technology addresses and serves a broad range of applications in the life sciences as reflected in the categories "cells and organs-on-chip" as well as biomedical and pharmaceutical areas like diagnostics, drug testing and personalized medicine.

To ensure the quality of abstracts accepted for MicroTAS 2023, a Technical Program Committee (TPC) consisting of 61 of our colleagues, together with 25 members of the Executive Technical Program Committee (ETPC), balanced across all three regions, contributed significant time and energy towards evaluating all abstract submissions. Together these volunteers evaluated 777 submissions in June, during on-line meetings, and selected 99 for oral presentations and 612 for poster presentations. In addition to the regular submissions, we accepted 101 Late News submissions for a grand total of 813 accepted abstracts. We arranged the parallel sessions into the Technical Program, taking care that similar topics be not presented in concurrent sessions, so that everybody be able to attend all talks on topics of his/her preference.

The importance of the contributions of TPC and ETPC members in maintaining the technical quality of the meeting and ensuring that the best and most exciting work emerges in both, poster and oral presentations cannot be overemphasized.

The diligent, dedicated, and unbiased work of the TPC/ETPC members are the bedrock of MicroTAS scientific program with exceptional quality. Membership on each committee is for a fixed term, with new members nominated by leaders in our community and self-nominated, then selected by the CBMS Board of Directors. The TPC/ETPC members dedicate late nights and weekends to our community to ensure the best and most exciting work is accepted. Thank you, TPC and ETPC members.

The MicroTAS 2023 oral program includes a suite of six exceptional Plenary Speakers, and twelve engaging Keynote Speakers, along with a slate of 99 exceptional submitted oral presentations. In each case, we sincerely hope that the scientific content and the presenter will inspire you to reflect the capabilities and understanding that can be unlocked by microfluidic systems, perhaps even influencing your own thinking and path forward.

For the first time in the MicroTAS, we decided to organize a Special Focus Session. This year it will be Organoids and the session will present fundamental research concerning organoids, human-induced pluripotent cell (iPS cell) models and recent work on studies of tissue development using organoids. We believe that it will be a huge inspiration for our community for further research.

The heart of every day's program is the poster session. The excellent contributions of hundreds of presenters make this part of the day a particularly great time for discussions, brainstorming and networking. PhD students with abstracts that have been highly ranked during the TPC/ETPC evaluation will be challenged in a competition for the daily or conference poster award. Even more awards will be celebrated during the week and specifically during the awards ceremony on Thursday.

In addition to the talks and poster sessions, we have arranged for 8 pre-conference workshops on Sunday, October 15, 2023. The workshops cover a wide range of emerging thematic areas related to microfluidics and provide an excellent opportunity to get a comprehensive overview on a specific topic in an intensive, 3-hours lecture.

COVID-19 showed us how in-person contact and conversation is important. Therefore, we organized for you activities associated with the conference such as Student Mixer, Women's Evening, and the Banquet in Spodek. Furthermore, for the first time in MicroTAS we have Science Speed Dating. This opportunity gives young scientists a chance to talk briefly with experienced scientists about specific topics such as Mobility, Family and Career, Women in Science, Post-Doc Positions, and Industrial. We hope that they will be held successfully and become a permanent part of the next MicroTAS conferences.

The list of individuals involved in making this MicroTAS conference a success is extensive. We would like to again thank the members of the TPC and ETPC for helping to build a strong scientific program and serving as session chairs, and, in particular, the ETPC group leaders who were central to this process (Yi-Chin Toh. Rebecca Pompano, Thomas Gervais, and Elzbieta Jastrzebska. Moreover, we are grateful for the efforts of members of the Exhibit and Sponsorship Committee (with Nicolas Verplanck and Artur Dybko as chairs), the Promotion Committee (with Stephanie Decrouix and Agnieszka Zuchowska as chairs) and Local Organizing Committee. We thank Jonathan Cottet and Bastien Venzac who have promotes MicroTAS in social media. We thank Ilona Grabowska-Jadach and Sławomir Jakieła for setting up the Sunday Workshops, Lourdes Basabe Desmonts and Edmond Young, for serving as Poster Award Chairs, Agnieszka Zuchowska for organizing Welcome Reception, Magdalena Flont for organizing the Women's Faculty Event and Patrycja Sokolowska for organizing the Students Mixer and Michal Chudy for coordinating Conference Banquet. Finally, we thank all 40 chairs of the sessions and plenary talks.

We are most thankful for help and support of students and postdoctoral fellows before and during the conference.

We are grateful to CBMS and its board members, including the current and past Boards of Directors and Executive Boards, who have promoted the growth of the MicroTAS conference over the years and provided valuable feedback during the planning of this year's meeting. In particular, we thank Amy Herr, CBMS President, and Joel Voldman, head of the TPC, as well as Petra Ditrich, head of the Awards Committee, for their support. It was your trust that made it possible to host this top-level conference for the first time in Poland.

Of course, we also thank all the sponsors, who have generously supported the conference, as well as the exhibitors, who will present their products and services during the meeting.

In addition, as with previous MicroTAS, the recipients of the Young Innovator Award, co-sponsored by the ACS Analytical Chemistry and CBMS, the Pioneers in Miniaturization co-sponsored by RSC journal Lab on a Chip, Dolomite and CBMS, and the Test of Time Award sponsored by Springer Nature Microsystems & Nanoengineering will be announced. In each case, we sincerely hope that the scientific content and the presenter will inspire you to reflect the capabilities and understanding that can be unlocked by microfluidic systems.

There will also be a series of awards to be presented in MicroTAS 2023, including: Microsystems & Nanoengineering/Springer Nature Best Talk Award, Elsevier Sensors and Actuators B. Chemical Best Paper Award, Biomicrofluidics (AIP) Best Paper Award, NIST and Lab on a Chip Art in Science Award, CHEMINAS (Society for Chemistry and Micro-Nano Systems) daily Young Researcher Poster Award, Royal Society of Chemistry/Lab on a Chip Widmer Poster Award, Sensors (MDPI) Outstanding Sensors and Actuators, Detection Technologies Poster Award, and IMT Masken und Teilungen AG Microfluidics on Glass Poster Award.

Moreover, we would like to express our most sincere and deepest gratitude to Sara Stearns and Shirley Galloway of Preferred Meeting Management Inc. (PMMI), who guided us through the past months, answered questions efficiently and with great patience. Without their expertise, their deep knowledge of the MicroTAS community, permanent kindness and tireless efforts as conference organizers, the meeting would not be as successful as it is.

Finally, thank you to all of you for joining us in Katowice for MicroTAS 2023 and for contributing to the success of the conference.

Welcome to Poland, welcome to Katowice!

Zbighiew Brzózka Warsaw University of Technology, POLAND

Elabiete Destre

Elżbieta Jastrzębska Warsaw University of Technology, POLAND

4

SPECIAL FOCUS SESSION SPEAKERS

Special Focus Session - Organoids 11:40 - 12:40

Hall C

This session will present fundamental research concerning organoids, human-induced pluripotent cell (iPS cell) models and recent work on studies of tissue development using organoids.

TUESDAY, 17 OCTOBER — 11:40 – 12:10

Special Session Speaker

Leonora Bużańska Polish Academy of Sciences, POLAND

EMERGING HUMAN BRAIN ORGANOID FIELD TO MODEL EARLY DEVELOPMENT AND PATHOLOGY

TUESDAY, 17 OCTOBER — 12:10 – 12:40

Special Session Speaker

Milica Radisic University of Toronto, CANADA

ORGANOIDS AND ORGANS-ON-A-CHIP: FROM TOXICITY TESTING TO PERSONALIZED MEDICINE

KEYNOTE Speakers

MONDAY, 16 OCTOBER — 16:35 – 17:05

Session 1A4 - Extracellular Matrix

ENGINEERING EXTRACELLULAR MATRIX: COMPONENTS, MECHANICS, AND ARCHITECTURE Pilnam Kim

Korea Advanced Institute of Science and Technology (KAIST), KOREA

Session 1B4 - Blood Processing

BLOOD MICROFLUIDICS: FROM FRACTIONATION TO LIQUID BIOPSY lan Papautsky University of Illinois, Chicago, USA

Session 1C4 - Wearable and Diagnosis

WEARABLE MICROFLUIDIC SENSING TECHNOLOGIES FOR HEALTHCARE APPLICATIONS Chwee Teck Lim National University of Singapore, SINGAPORE

TUESDAY, 17 OCTOBER — 17:10 – 17:40

Session 2A4 - Cell/Organ-on-a-Chip I

CELL AND ORGAN-ON-CHIP APPROACHES IN CANCER RESEARCH Agnieszka Żuchowska Warsaw University of Technology, POLAND

Session 2B4 - Optical Detection

ADVANCEMENTS IN MICROFLUIDICS: CELL BIOPSIES, DIAGNOSTICS, AND PROGRAMMABLE MATTER Wouter van der Wijngaart KTH Royal Institute of Technology, SWEDEN

KEYNOTE SPEAKERS

TUESDAY, 17 OCTOBER - 17:10 - 17:40 (continued)

Session 2C4 - Single Cell Analysis III

MICROFLUIDIC PLATFORMS FOR IMMUNOTHERAPY AND GENOME EDITING Aram Chung Korea University, KOREA

WEDNESDAY, 18 OCTOBER - 16:00 - 16:30

Session 3A4 - Neurobiology & Neuroscience EX VIVO ORGAN-ON-CHIP PLATFORMS FOR SENSING NEURON-IMMUNE COMMUNICATION Ashley E. Ross University of Cincinnati, USA

Session 3B4 - Point-of-Care

PAPER-BASED MOLECULAR DIAGNOSTICS FOR PATHOGEN DETECTION AT THE EXTREME POINTS-OF-CARE Jacqueline Linnes Purdue University. USA

Session 3C4 - 3D Printing

3D PRINTING MEMBRANE INTEGRATED DEVICES Rosanne Guijt Deakin University, AUSTRALIA

THURSDAY, 19 OCTOBER — 09:50 – 11:20

Session 4A1 - Cell-on-a-Chip Pathogens ADVANCED MODELS FOR COMPREHENSIVE UNDERSTANDING OF VIRAL INFECTION Krzysztof Pyrć Jagiellonian University, POLAND

KEYNOTE SPEAKERS

THURSDAY, 19 OCTOBER - 09:50 - 11:20 (continued)

Session 4B1 - Microvalves & Delivering DIGITAL MANUFACTURING OF FUNCTIONAL, READY-TO-USE MICROFLUIDIC SYSTEMS David Juncker McGill University, CANADA

Session 4C1 - Space Exploration

TOWARDS UNIVERSAL ANALYTICAL PLATFORMS TO STUDY BIOLOGICAL SYSTEMS Lourdes Basabe University of the Basque Country, SPAIN

PLENARY SPEAKERS

MONDAY, 16 OCTOBER — 08:30 – 09:15

Plenary Presentation I

Nicole Pamme Stockholm University, SWEDEN

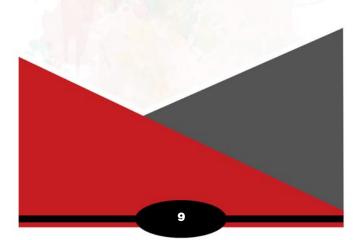
MICROFLUIDICS FOR CLINICAL DIAGNOSTICS AND ENVIRONMENTAL ANALYSIS IN RESOURCE-LIMITED SETTINGS

MONDAY, 16 OCTOBER - 13:50 - 14:35

Plenary Presentation II

Séverine Le Gac University of Twente, NETHERLANDS

ORGAN-ON-CHIP MODELS FOR BIOLOGICAL AND MEDICAL APPLICATIONS


TUESDAY, 17 OCTOBER — 08:30 – 09:15

Plenary Presentation III

Manabu Tokeshi Hokkaido University, JAPAN

DEVELOPMENT OF FUNCTIONAL LIPID NANOPARTICLES USING MICROFLUIDIC DEVICES

PLENARY SPEAKERS

WEDNESDAY, 18 OCTOBER — 08:30 - 09:15

Plenary Presentation IV

Bogusław Buszewski Mikolaj Kopernik University Torun, POLAND

BIOANALYTICS FROM MICRO- TO NANO- DIMENSION

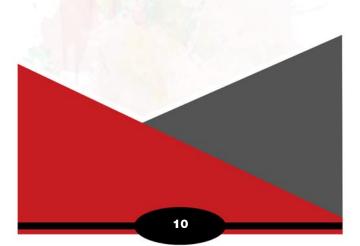
WEDNESDAY, 18 OCTOBER — 13:05 - 13:50

Plenary Presentation V

Lydia L. Sohn University of California, Berkeley, USA

MICROFLUIDICS FOR ASSESSING BREAST CANCER SUSCEPTIBILITY

THURSDAY, 19 OCTOBER - 08:30 - 09:15



Plenary Presentation VI

Artur Chmielewski

National Aeronautics and Space Administration (NASA), and California Institute of Technology, USA

HOW MICRODEVICES REVOLUTIONIZE DEEP SPACE EXPLORATION

Parallel Oral Sessions

Each day papers will be presented in three parallel sessions. There will be a total of 99 oral sessions throughout the Conference.

Guide to Understanding Session Numbering

Each session in the technical program is assigned a unique number which clearly indicates when and where the session is presented. The number of each session is shown before the session title.

Session Number: 1A1

The first character (i.e., 1) indicates the day of the Conference:

- 1 = Monday $\mathbf{2} = Tuesday$
- 3 = Wednesday4 = Thursday

The second character (i.e., A) indicates which room the session is held in:

- $\mathbf{A} = \text{Hall } \mathbf{C}$
- $\mathbf{B} = Auditorium$
- $\mathbf{C} = \text{Ballroom B}$

The third character (i.e., 1) shows the sequence the session is held during the day:

- 1 = morning
- $\mathbf{2} = |ate-morning|$
- 3 = afternoon
- 4 = late afternoon

Posters

Three poster sessions will be held Hall B of the Congress Centre on Monday, Tuesday, and Wednesday. All posters are listed with their assigned number and day that they are on display. Authors will be available for questions during their appointed time. Posters are color coded by day and classification.

Guide to Understanding Poster Numbering

Each poster is assigned a unique number which clearly indicates when and where the poster is presented. The number of each poster is shown before the title.

Poster Number: M001a

The first character (i.e., M) indicates the day of the Conference that the poster will be on display.

- M = Monday
- $\mathbf{T} = Tuesday$ W = Wednesday

The second character (i.e., 001) is the poster board position on the floor plan. The last character (i.e., a) shows the classification color of the poster.

	а	Cells, Organisms and Organs on a Chip
Z	b	Diagnostics, Drug Testing and Personalized Medicine
CATION	C	Fundamentals in Microfluidics and Nanofluidics
C A	d	Integrated Microfluidic Platforms
SIF		Micro- and Nanoengineering
AS	f	Sensors and Detection Technologies
С С	g	Other Applications of Microfluidics
	h	Late News

SUNDAY PROGRAM

SUNDAY, 15 OCTOBER

08:15 - 09:15 Morning Workshop Registration

09:00 - 12:00 Morning Workshops (Break at 10:30)

WORKSHOP 1

MULTIORGAN-ON-A-CHIP

Yi-Chin Toh¹, Ashleigh Theberge², Rebecca Pompano³, Bryan Gao⁴, and Jee Yeon Lee⁵

- ¹Queensland University of Technology, AUSTRALIA, ²University Washington, USA,
- ³University of Virginia, USA, ⁴University of Melbourne, AUSTRALIA, and

⁵National University of Singapore, SINGAPORE

WORKSHOP 3

MICROFLUIDICS MEETS CARDIOVASCULAR BIOLOGY

- Sara Baratchi¹, Khashayar Khoshmanesh², and Darwin R. Reyes^{3,4}
- ¹Baker Heart Diabetes Institute, AUSTRALIA, ²RMIT University, AUSTRALIA,

³National Institute of Standards and Technology (NIST), USA, and

⁴Microfluidics Association (MFA), USA

WORKSHOP 4

SMART MATERIALS WITHIN MICROFLUIDIC DEVICES FOR SENSING AND ACTUATION

Fernando Benito López, Lourdes Basabe-Desmonts, and Janire Saez Castaño University of the Basque Country, SPAIN

Workshop sponsored by: Frontiers Media S.A.

WORKSHOP 5


DROPLET MICROGLUIDICS - DESIGN, IMPLEMENTATION AND APPLICATIONS

Piotr M. Korczyk¹, Sławomir Błoński¹, and Sławomir Jakieła² ¹Institute of Fundamental Technological Research Polish Academy of Sciences, POLAND and ²Warsaw University of Life Sciences, POLAND

WORKSHOP 6

COMMERCIALIZATION OF MICROFLUIDICS DEVICES AND SYSTEMS

Piotr Garstecki¹, Vincent Linder², Tomasz Kosiński³, and Marcin Myszkowski³ ¹Polish Academy of Sciences, POLAND, ²BioMedical Entrepreneur and IVD Independent Consultant, and ³Scope Fluidics S.A., POLAND

SUNDAY PROGRAM

13:45 - 14:15 Afternoon Workshop Registration

14:00 - 17:00 Afternoon Workshops (Break at 15:30)

WORKSHOP 7

DNA ANALYSIS IN NANOCHANNELS

Jonas Tegenfeldt¹ and Fredrik Westerlund²

¹Lund University, SWEDEN and ²Chalmers University, SWEDEN

WORKSHOP 8

STATISTICAL TOOLS AND APPROACHES TO VALIDATE RESEARCH RESULTS

Katarzyna Pawlak and Magdalena Borowska Warsaw University of Technology, POLAND

WORKSHOP 9

PAPER MICROFLUIDICS - DESIGN, MANUFACTURE, APPLICATION

Daniel Citterio

Keio University, JAPAN

WORKSHOP 10

3D PRINTING FOR BIOMEDICINE

Wojciech Swieszkowski¹ and Marco Costantini² ¹Warsaw University of Technology, POLAND and ²Institute of Physical Chemistry,

Polish Academy of Sciences, POLAND

WORKSHOP 11

POC DIAGNOSTICS AT RESOURCE LIMITED SETTINGS

Aman Russom

KTH Royal Institute of Technology, SWEDEN

WORKSHOP 12

POLYMER PRODUCTION AND STANDARDIZATION AND A HAND-ON TEST WITH OFF-THE-SHELF MICROFLUIDIC COMPONENTS

Claudia Gärtner

microfluidic ChipShop GmbH, GERMANY

17:00 - 19:00 Conference Registration and Check-In

17:00 - 19:00 Wine and Cheese Reception

VAGNOM

	MONDAY	AT A GLAI	NCE	
07:00-18:05	Registration			
08:00-08:30	Opening Remarks			
08:30-09:15	Plenary Presentation I Nicole Pamme – Stockholm University, SWEDEN			
09:15-09:30	Transition			
09:30-10:30	Session 1A1 Hypoxia-on-a-Chip Single Cell Analysis I Detection I			
10:30-11:00	Break: Exhibit and P	oster Inspection		
11:00-12:20	Session 1A2 Microfluidic Flow Cytometry	Session 1B2 Single Cell Analysis II	Session 1C2 Permeability	
12:20-13:30	Lunch			
12:25-13:25	Industrial Stage 1			
13:30-13:50	Analytical Chemistry	v – Young Innovator A	ward Presentation	
13:50-14:35	Plenary Presentation II Séverine Le Gac – University of Twente, NETHERLANDS			
14:35 - 16:35	Poster Session 1 and	Exhibit Inspection		
16:05-16:35	Break			
16:35-18:05	Session 1A4 Extracellular Matrix	Session 1B4 Blood Processing	Session 1C4 Wearable and Diagnosis	
	KEYNOTE Pilnam Kim	KEYNOTE lan Papautsky	KEYNOTE Chwee Teck Lim	
18:15-19:45	Student Mixer			
18:15-22:30	30 Women in Microfluidics Event			

MONDAY, 16 OCTOBER

07:00 - 18:05 Registration

08:30 Opening Remarks – MicroTAS 2023 Conference Chairs

- Zbigniew Brzózka Warsaw University of Technology, POLAND
- Elżbieta Jastrzębska Warsaw University of Technology, POLAND

Plenary Presentation I

Chair: Elżbieta Jastrzębska, Warsaw University of Technology, POLAND

Hall C

AONDAY

08:30 MICROFLUIDICS FOR CLINICAL DIAGNOSTICS AND ENVIRONMENTAL ANALYSIS IN RESOURCE-LIMITED SETTINGS Nicole Pamme

Stockholm University, SWEDEN

09:15 - 09:30 Transition

Session 1A1 - Hypoxia-on-a-Chip

Chair: Karen Cheung, University of British Columbia, CANADA

Hall C

09:30

BRACHYTHERAPY ON-A-CHIP: A SIMPLE, PRECISE, AND CLINICALLY-RELEVANT APPROACH FOR RADIOTHERAPY TESTING IN 3D BIOLOGY

Rodin Chermat^{1,2,3}, Elena Refet-Mollof^{1,2,3}, Yuji Kamio^{2,5}, Jean-François Carrier^{2,3,4,5}, Philip Wong^{2,3,6}, and Thomas Corrigin^{2,3}.

and Thomas Gervais^{1,2,3}

¹Polytechnique Montréal, CANADA, ²Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), CANADA, ³Institut du Cancer de Montréal (ICM), CANADA, ⁴Université de Montréal, CANADA, ⁵Centre Hospitalier de l'Université de Montréal (CHUM), CANADA, and ⁶University Health Network, CANADA

09:50 INTERPLAY BETWEEN DRUG RESISTANCE AND MITOCHONDRIA MORPHOLOGY IN A TUMOR-ON-CHIP MODEL UNDER PRECISE OXYGEN CONTROL

Charlotte Bouquerel^{1,2}, Mathieu Deygas¹, Linda Meddahi¹, Bertrand Cinquin³, Géraldine Gentric¹, Giacomo Gropplero¹, William César², Fatima Mechta-Grigoriou¹, Gérard Zalcman¹, Nathalie Mazure⁴, Maria Carla Parrini¹, and Stephanie Descroix¹ ¹Institut Curie, FRANCE, ²Fluigent, FRANCE, ³Institut Pierre Gilles de Gennes, FRANCE, and ⁴INSERM, FRANCE

10:10 A MICROFLUIDIC DEVICE TO SIMULTANEOUOSLY GENERATE SHEAR STRESS AND HYPOXIA CONDITIONS TO STUDY ENDOTHELIAL CELL MORPHOLOGY AND REACTIVE OXYGEN SPECIES BEHAVIOR Min-Yen Hsin¹, Yen-Cheng Hsiung¹, Kuang-Hsing Chiang^{1,2},

Min-Yen Hsin', Yen-Cheng Hsiung', Kuang-Hsing Chiang', and Nien-Tsu Huang^{1,3} ¹National Taiwan University, TAIWAN, ²Taipei Medical University,

TAIWAN, and ³National Taiwan University, TAIWAN

	Session 1B1 - Single Cell Analysis I Chair: Petra Ditrich, ETH Zurich, SWITZERLAND			
	Auditorium			
09:30	THREE-DIMENSIONAL ISOTROPIC IMAGING OF LIVE SUSPENSION CELLS BASED ON DROPLET MICROVORTICES Braulio Cardenas Benitez, Xuhao Luo, Erin Rhee, Shehreen T. Hassan, Richard Hurtado, Abigail F. Howe, and Abraham P. Lee University of California, Irvine, USA			
09:50	LIVE FLUOROSPOT: HIGH-THROUGHPUT SYSTEM FOR REAL-TIME SINGLE-CELL SECRETION IMAGING WITH OPTICAL WAVEGUIDE CHIP Zhuohao Yang ¹ , Mai Yamagishi ² , Nobutake Suzuki ² , Yuto Kurisu ¹ , Koji Nagaoka ¹ , Kazuyo Moro ³ , Kazuhiro Kakimi ⁴ , Etsushi Kuroda ⁵ , Shinya Sakuma ⁶ , Takashi Funatsu ¹ , and Yoshitaka Shirasaki ¹ ¹ University of Tokyo, JAPAN, ² Live Cell Diagnosis, Ltd., JAPAN, ³ Institute of Physical and Chemical Research (RIKEN), JAPAN, ⁴ Kindai University, JAPAN, ⁵ Hyogo College of Medicine, JAPAN, and ⁶ Kyushu University, JAPAN			
10:10	HIGH-SPEED REPETITIVE OSMOTIC STIMULATIONS TO A SIGNLE CELL BY UTILIZING MICRO-VORTICES Makoto Saito, Yoko Yamanishi, and Shinya Sakuma <i>Kyushu University, JAPAN</i>			
Session 1C1 - Biomolecular Detection I Chair: Joel Voldman, Massachusetts Institute of Technology, USA				
09:30	Chair: Joel Voldman, <i>Massachusetts Institute of Technology, USA</i> Ballroom B A MICROFLUIDIC DEVICE COMBINING COMPETITIVE NON-SELEX			
	Chair: Joel Voldman, <i>Massachusetts Institute of Technology, USA</i> Ballroom B A MICROFLUIDIC DEVICE COMBINING COMPETITIVE NON-SELEX METHOD WITH WASHING STRINGENCY CONTROL FOR SELECTING FOLATE RECEPTOR ALPHA APTAMERS Yi-Da Chung and Gwo-Bin Lee			
09:30 09:50 10:10	Chair: Joel Voldman, Massachusetts Institute of Technology, USA Ballroom B A MICROFLUIDIC DEVICE COMBINING COMPETITIVE NON-SELEX METHOD WITH WASHING STRINGENCY CONTROL FOR SELECTING FOLATE RECEPTOR ALPHA APTAMERS Yi-Da Chung and Gwo-Bin Lee National Tsing Hua University, TAIWAN MEDIATOR PROBE-BASED MULTIPLEX DIGITAL METHYLATION- SPECIFIC PCR FOR SENSITIVE DETECTION AND METHYLATION ANALYSIS OF BIOMARKER PANELS Weiwen Cui, Fan-En Chen, Yang Zhao, and Tza-Huei Wang			

Session 1A2 - Microfluidic Flow Cytometry Chair: Kazuma Mawatari, <i>Waseda University, JAPAN</i>				
Hall C				
11:00	IMPEDANCE FLOW CYTOMETRY BASED ON CONSTRICTIONAL MICROCHANNELS AND DEEP LEARNING Huiwen Tan ^{1,2} , Xiao Chen ^{1,2} , Xukun Huang ^{1,2} , Deyong Chen ^{1,2} , Junbo Wang ^{1,2} , and Jian Chen ^{1,2} ¹ Chinese Academy of Sciences, CHINA and ² University of Chinese Academy of Sciences, CHINA			
11:20	MULTI-COLOR AND MULTI-DELAY, TWO-DIMENSIONAL FLOW CYTOMETRY FOR MULTI MARKER IDENTIFICATION AND DISCRIMINATION OF FLUORESCENCE AND SCATTERING Kunihiko lizuka ^{1,2} , Masaki Ueno ¹ , and Soo Hyeon Kim ¹ ¹ University of Tokyo, JAPAN and ² Lab Arco Limited, JAPAN			
11:40	IMAGING CYTOMETRY USING ELECTRICAL IMPEDANCE TRIGGERED FLASH Ishita Bansal, Shamibrota K. Roy, Kaushik Basu, and Prosenjit Sen Indian Institute of Science, INDIA			
12:00	IMPEDANCE FLOW CYTOMETRY BASED SINGLE CELL SORTING AND DESALTING FOR MASS SPECTROMETRY Junwen Zhu, Yongxiang Feng, Peng Zhao, Huichao Chai, Fei Liang, and Wenhui Wang Tsinghua University, CHINA			
Cha	Session 1B2 - Single Cell Analysis II air: Jose L. Garcia Cordero, Institute of Human Biology, SWITZERLAND			
	Auditorium			
11:00	A NOVEL HIGH-THROUGHPUT INTRACELLULAR DELIVERY PLATFORM FOR HIGHLY EFFICIENT "OFF-THE-SHELF" NATURAL KILLER CELL-BASED IMMUNOTHERAPY Hyelee Kim ¹ , Mujin Lee ² , Bohwa Han ² , Junsang Doh ² , and Aram J. Chung ¹			
	¹ Korea University, KOREA and ² Seoul National University, KOREA			
11:20	DENDRIMERIC DNA COORDINATE BARCODING DESIGN FOR SPATIAL RNA SEQUENCING Jiao Cao and Lingling Wu Xiamen University, CHINA			
11:40	A MICROFLUIDIC ASSAY FOR SINGLE CELL MICRORNA DAMARTIFICATION IN NON-INVASIVELY SAMPLED PIMARY HUMAN CELLS Warssa Ho, Jonathan R. Baker, Keith R. Willison, Peter J. Barnes, David R. Klug, and Louise E. Donnelly Imperial College London, UK			

	Session 1B2 - Single Cell Analysis II (continued)
12:00	ELASTOMICS: HIGH-THROUGHPUT MECHANICAL PHENOTYPING AND TRANSCRIPTOMICS OF SINGLE CELLS Akifumi Shiomi ¹ , Taikopaul Kaneko ¹ , Kaori Nishikawa ¹ , and Hirofumi Shintaku ^{1,2} ¹ Institute of Physical and Chemical Research (RIKEN), JAPAN and ² Kyoto University, JAPAN
	Session 1C2 - Permeability Chair: Carolyn Ren, <i>University of Waterloo, CANADA</i>
	Ballroom B
11:00	LIPOSOME BUDDING: MICROFLUIDIC GENERATION OF MONODISPERSE LIPOSOMES Jiajue Ji and Ryuji Kawano Tokyo University of Agriculture and Technology, JAPAN
11:20	SHAPE-CONTROLLED LIPID BILAYER FOR ENHANCED ION CHANNEL INCORPORATION Hisatoshi Mimura ¹ , Toshihisa Osaki ^{1,2} , Sho Takamori ¹ , Kenji Nakao ² , and Shoji Takeuchi ^{1,3} ¹ Kanagawa Institute of Industrial Science and Technology, JAPAN, ² MAQsys Inc., JAPAN, and ³ University of Tokyo, JAPAN
11:40	MALE AND FEMALE HUMAN-MIMETIC ARTIFICIAL CELL MEMBRANES TO ASSESS PASSIVE PERMEABILITY IN THE SMALL INTESTINE USING MICROFLUIDIC TECHNOLOGIES Kirandeep Gill, Jaime Korner, and Katherine Elvira University of Victoria, CANADA
12:00	SYNTHESIS AND ISOLATION OF METAL COMPLEX-CONTAINING PROTEINS BY SUPER WATER REPELLENT DOUBLY REENTRANT STRUCTURE UMBRELLA PILLAR ARRAY Daiki Tanaka ¹ , Masashi Kobayashi ¹ , Risa Fujita ¹ , Takashiro Akitsu ² , Takashi Tanii ¹ , Masahiro Furuya ¹ , Tetsushi Sekiguchi ¹ , and Shuichi Shoji ¹
	¹ Waseda University, JAPAN and ² Tokyo University of Science, JAPAN
12:20 -	13:30 Lunch
	Industrial Stage 1 Chair: Lisa Muiznieks, <i>ELVESYS, FRANCE</i>
	Auditorium
12:25	1a - CHALLENGES OF DEVELOPING HIGH-PRECISION FLUID MANAGEMENT PRODUCTS BASED ON STATE-OF-THE-ART TECHNOLOGIES FOR LIFE SCIENCES AND DIAGNOSTICS Bruno Charléty Fluigent, FRANCE
12:45	1b - WHERE PHOTONICS MEET MICROFLUIDICS – CONSUMABLES FOR LIFE SCIENCES MADE OF GLASS Tobias Bauert IMT Microtechnologies, SWITZERLAND
	18

1c - STANDARDIZATION LEADING MICROFLUIDICS TOWARDS 13:05 LABORATORY ROUTINE Claudia Gärtner microfluidic ChipShop GmbH, GERMANY Analytical Chemistry - Young Innovator Award Presentation Hall C 13:30 To Be Announced Govind Kaigala University of British Columbia, CANADA Plenary Presentation II Chair: Amy Herr, University of California, Berkeley, USA Hall C 13:50 **ORGAN-ON-CHIP MODELS FOR BIOLOGICAL AND** MEDICAL APPLICATIONS Séverine Le Gac University of Twente, NETHERLANDS 09:15 - 09:30 Transition 14:35 - 16:35 Poster Session 1 and Exhibit Inspection Presentations are listed by topic category with their assigned number starting on page 45. 16:05 - 16:35 Break Session 1A4 - Extracellular Matrix Chair: Hiroaki Suzuki, Chuo University, JAPAN Hall C 16:35 **KEYNOTE PRESENTATION** ENGINEERING EXTRACELLULAR MATRIX: COMPONENTS, MECHANICS, AND ARCHITECTURE Pilnam Kim Korea Advanced Institute of Science and Technology (KAIST), KOREA 17:05 A PATTERNING TECHNIQUE FOR MICRO-CRIMPED COLLAGEN SHEETS WITH TUNABLE TENSILE PROPERTIES Yuming Zhang University of Toronto, CANADA 17:25 TISSUE-M2: TUNABLE IN SITU SYNTHESIS OF ULTRA-THIN EXTRACELLULAR MATRIX-DERIVED MEMBRANES Jeremy Newton, Siwan Park, and Edmong W.K. Young University of Toronto, CANADA 19

Industrial Stage 1 (continued)

	Session 1A4 - Extracellular Matrix (continued)
17:45	IN-FLOW FORMATION OF COLLAGEN MICROGELS FOR REDUCED CONTRACTION IN LONG-TERM TISSUE CULTURE Sushant Singh, Teodor Veres, and Axel Guenther University of Toronto, CANADA
	Session 1B4 - Blood Processing Chair: Daniel Irimia, Massachusetts General Hospital, Harvard Medical School, USA
	Auditorium
16:35	KEYNOTE PRESENTATION BLOOD MICROFLUIDICS: FROM FRACTIONATION TO LIQUID BIOPSY Ian Papautsky University of Illinois, Chicago, USA
17:05	ACOUSTOPHORESIS ENRICHMENT OF TUMOR CELL CLUSTERS IN BLOOD OF PATIENTS WITH METASTATIC PROSTATE CANCER Cecilia Magnusson ¹ , Per Augustsson ¹ , Eva Undvall Anand ¹ , Andreas Lenshof ¹ , Andreas Josefsson ^{2,3} , Anders Bjartell ¹ , Yvonne Ceder ¹ , Hans Lilja ^{1,4} , and Thomas Laurell ¹ ¹ Lund University, SWEDEN, ² Gothenburg University, SWEDEN, ³ Umeå University, SWEDEN, and ⁴ Memorial Sloan-Kettering Cancer Center, USA
17:25	INERTIAL ISOLATION OF LEUKOCYTES FROM ULTRA-LOW VOLUME BLOOD SAMPLES OBTAINED BY FINGERSTICK Roberto Rodriguez-Moncayo ¹ , John-Alexander Preuss ² , Janina Bahnemann ² , Jongyoon Han ¹ , and Joel Voldman ¹ ¹ Massachusetts Institute of Technology, USA and ² University of Augsburg, GERMANY
17:45	RARE CELL ENRICHMENT BY CELL SELF-ORGANIZATION IN ACOUSTIC FIELDS Richard Soller, Ola Jakobsson, and Per Augustsson Lund University, SWEDEN
	Session 1C4 - Wearable and Diagnosis Chair: Artur Dybko, Warsaw University of Technology, POLAND
	Ballroom B
16:35	KEYNOTE PRESENTATION WEARABLE MICROFLUIDIC SENSING TECHNOLOGIES FOR HEALTHCARE APPLICATIONS Chwee Teck Lim National University of Singapore, SINGAPORE
17:05	ARAUCARIA LEAF-INSPIRED MICROFLUIDIC PATCH FOR HIGHLY EFFICIENT SWEAT COLLECTION AND ANALYSIS Yifan Li ^{1,2} , Sixuan Duan ^{1,2} , Shuhe Liu ¹ , Kai Hoettges ^{1,2} , Quan Zhang ^{1,2} , Mark Leach ^{1,2} , and Pengfei Song ^{1,2} ¹ Xi'an Jiaotong-Liverpool University, CHINA and ² University of Liverpool, UK

	Sess	ion 1C4 - Wearable and Diagnosis (continued)		
17:25	DETEC Sejin L	COATED SERS MASK PATCH FOR LUNG CANCER BIOMARKER CTION IN EXHALED BREATH AEROSOL .ee, Sangyeon Lee, and Ki-hun Jeong Advanced Institute of Science and Technology (KAIST), KOREA		
17:45				
18:05		Adjourn for the Day		
18:15 ·	- 19:4 <mark>5</mark>	Student Mixer		
18:15 ·	22:30	Women in Microfluidics Event		
	FC	DRMULATIONS FOR DELUIDIC APPLICATIONS		
		SURFACTANTS For optimal droplet stabilization		

afaq

We can design solutions for all kinds of challenging experiments, contact us to know more

MONDAY

21

	TUESDAY	AT A GLA	NCE	
08:15-08:30	Announcements			
08:30-09:15	Plenary Presentation III Manabu Tokeshi – <i>Hokkaido University, JAPAN</i>			
09:15-09:35	Lab on a Chip and Dolomite – Pioneers of Miniaturization Lectureship Prize and Presentation			
09:35-09:50	Transition			
09:50-11:10	Session 2A1Session 2B1Session 2C1Cardiac &PathogensElectrochemicalStem-Derived CellsAnalysisDetection			
11:10-11:40	Break: Exhibit and P	oster Inspection		
11:20-11:40	Science Speed Datin	g		
11:40-12:40	Special Focus Session – Organoids SPEAKERS Leonora Bużańska and Milica Radisic			
12:40-13:50	Lunch			
12:45-13:45	Industrial Stage 2			
13:50-15:10	Session 2A3 Vascularization- on-a-Chip	Session 2B3 Droplets	Session 2C3 Bacteria Analysis	
15:10-17:10	Poster Session 2 and Exhibit Inspection			
16:40-17:10	Break			
17:10-18:40	Session 2A4 Cell/Organ- on-a-Chip I	Session 2B4 Optical Detection	Session 2C4 Single Cell Analysis III	
	KEYNOTE Agnieszka Żuchowska	KEYNOTE Wouter van der Wijngaart	KEYNOTE Aram Chung	

TUESDAY, 17 OCTOBER

08:15 - 08:30 Announcements

Lab on a Chip and Dolomite - Pioneers of Miniaturization Lectureship Prize and Presentation

Hall C

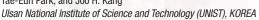
09:15 To Be Announced

09:35	- 09:50	Transition

	Session 2A1 - Cardiac & Stem-Derived Cells Chair: Shoji Takeuchi, <i>University of Tokyo, JAPAN</i>
	Hall C
09:50	NOVEL LAB-ON-A-CHIP SYSTEM: MECHANICAL STIMULATION OF CARDIAC CELLS VIA MAGNETIC NANOFIBERS AND ALTERNATING MAGNETIC FIELDS Dominik Kołodziejek, Oliwia Tadko, Marcin Drozd, Michał Wojasiński, Iwona Łopianiak, and Elżbieta Jastrzębska Warsaw University of Technology, POLAND
10:10	THE HYBRID CANTILEVER OF CONDUCTIVE GRAPHENE AND SU-8 FOR IMPROVING THE MATURITY AND ELECTRICAL COUPLING OF CARDIOMYOCYTES Longlong Li ¹ , Jong-Yun Kim ¹ , Daeyun Lim ² , Chil-Hyoung Lee ² , and Dong-Weon Lee ¹ ¹ Chonnam National University, KOREA and ² Korea Institute of Industrial Technology, KOREA
10:30	PULSE FREQUENCY-DEPENDENT MATURATION OF HUMAN IPS-DERIVED CARDIAC MICROFIBER BY ELECTRICAL STIMULATION Akari Masuda ¹ , Jumpei Muramatsu ¹ , Shun Itai ¹ , Yuta Kurashina ² , Shugo Tohyama ¹ , and Hiroaki Onoe ¹ ¹ Keio University, JAPAN and ² Tokyo University of Agriculture and Technology, JAPAN
10:50	LABEL-FREE SINGLE CELL IMPEDANCE ANALYSIS OF IPSC-DERIVED SPINAL CORD PROGENITOR CELLS FOR RAPID SAFETY AND EFFICACY PROFILING Linwei He ¹ , Jerome Tan ^{1,2} , Shi Yan Ng ³ , King Ho Holden Li ¹ , Jongyoon Han ^{2,4} , Sing Yian Chew ^{1,2} , and Han Wei Hou ^{1,2} ¹ Nanyang Technological University, SINGAPORE, ² Singapore-MIT Alliance for Research and Technology (SMART), SINGAPORE, ³ Agency for Science, Technology and Research (A*STAR), SINGAPORE, and ⁴ Massachusetts Institute of Technology, USA

23

	Session 2B1 - Pathogens Analysis Chair: Yoon-Kyoung Cho, <i>IBS (Institute for Basic Science), KOREA</i>
	Auditorium
09:50	PORTABLE HIGHLY MULTIPLEXED PROBE-MELT PCR PLATFORM FOR RAPID IDENTIFICATION AND ANTIMICROBIAL RESISTANCE GENOTYPING Fan-En Chen, Alexander Trick, and Jeff Wang Johns Hopkins University, USA
10:10	ON-DISC DNA EXTRACTION AND LAMP AMPLIFICATION FOR PLANT PATHOGEN DETECTION ENABLED BY DIGITAL ROTATIONALLY ACTUATED VALVES David Kinahan ¹ , Rohit Mishra ¹ , Lourdes Julius ¹ , Jack Condon ¹ , Patricija Pavelskopfa ¹ , Philip Early ¹ , Matthew Dorian ¹ , Katarina Mrvova ¹ , Grace Henihan ¹ , Faith Mangwanya ¹ , Tanya Dreo ² , and Cor Schoen ³ ¹ Dublin City University, IRELAND, ² National Institute of Biology, SLOVENIA, and ³ Wageningen University Research, NETHERLANDS
10:30	MICROFLUIDIC DEVICE COUPLED WITH PLASMONIC HOT-SPOT CATALYSIS FOR RAPID PATHOGEN NUCLEIC ACID DETECTION Tamer AbdElFatah, Mahsa Jalali, Sripadh Guptha Yedire, Imman I. Hosseini, Carolina del Real Mata, Haleema Khan, Seyed Vahid Hamidi, Olivia Jeanne, Roozbeh Siavash Moakhar, Myles Mclean, Dhanesh PatelZhen Wang, Geoffrey McKay, Mitra Yousefi, Dao Nguyen, Silvia M. Vidal, Chen Liang, and Sara Mahshid McGill University, CANADA
10:50	ELECTROSTATIC MICROFILTRATION-BASED ENRICHMENT OF LOW-ABUNDANCE PATHOGENS FROM LARGE-VOLUME SAMPLES IMPROVES THE DETECTION PERFORMANCE OF AMPLIFICATION-FREE NANOPORE SEQUENCING Yaoping Liu ¹ , Patrina Wei Lin Chua ¹ , Sharon Yan Han Ling ¹ , Joshua Raymond ¹ , James Strutt ¹ , Cheryl Siew Choo Chan ¹ , Peiying Ho ¹ , Megan Mcbee ¹ , Rohan Williams ^{1,2} , Stacy L. Springs ^{1,3} , and Jongyoon Han ^{1,3} ¹ Singapore - MIT Alliance for Research and Technology (SMART), SINGAPORE, ² National University of Singapore, SINGAPORE, and ³ Massachusetts Institute of Technology (MIT), USA
	Session 2C1 - Electrochemical Detection Chair: Elizaveta Vereshchagina, <i>SINTEF Digital, NORWAY</i>
	Ballroom B
09:50	ON-CHIP ELECTROCHEMICAL SENSING WITH ENHANCED DETECTING SIGNAL DUE TO CONCENTRATION-POLARIZATION BASED ANALYTE PRECONCENTRATION Sinwook Park ¹ , Daniel Kaufman ² , Hadar Ben-Yoav ² , and Gilad Yossifon ¹ ¹ Tel Aviv University, ISRAEL and ² Ben-Gurion University of the Negev, ISRAEL


24

 10:10 SUPER-NERNSTIAN PHOSPHORUS ION SENSITIVE FIELD EFFECT TRANSISTOR VIA EUROPIUM ION PROBE Yingming Xu, Peng Zhou, Terrence Simon, and Tianhong Cui University of Minnesota, USA 10:30 SINGLE-CELL ELECTRIC IMPEDANCE SENSOR BASED ON INTEGRATED CIRCUIT CHIP Wenhao Hui', Aman Lyu', Yingying Liu', Pui-In Mak', P. Martins Rui^{1,2}, KMeng Lei', and Yamwei Jia' 'University of Macau, CHINA and'Universidade de Lisboa, PORTUGAL 10:50 POINT-OF-CARE NUCLEIC ACID TESTING WITH A ONE-STEP BRANCHED DNA-BASED BIOSENSOR Xueqi Wang and Han Wang Tsinghua University, CHINA 11:10 - 11:40 Break: Exhibit and Poster Inspection 11:20 - 11:40 Science Speed Dating Special Focus Session - Organoids Chair: Plinam Kim, Korea Advanced Institute of Science & Technology (KAIST), KOREA 11:40 EMERGING HUMAN BRAIN ORGANOID FIELD TO MODEL EARLY DEVELOPMENT AND PATHOLOGY Leonora Buizańska Polish Academy of Sciences, POLAND 12:10 ORGANDIDS AND ORGANS-ON-A-CHIP: FROM TOXICITY TESTING TO PERSONALIZED MEDICINE Milica Radisic University of Toronto, CANADA 12:40 - 13:50 Lunch 12:40 - 13:50 Lunch 13:05 2b - TWO-PHOTON-POLYMERIZATION AS THE KEY ENABLING TECHNOLOGY FOR LIFE SCIENCES Alexander Legant Nanoscribe GmbH & Co. KG, GERMANY, AUSTRIA 13:05 2b - TWO-PHOTON-POLYMERIZATION AS THE KEY ENABLING TECHNOLOGY FOR LIFE SCIENCES Alexander Legant Nanoscribe GmbH, AUSTRIA 13:25 2c - A GENERIC MICROFLUIDIC CONNECTION SYSTEM BECOMES A REALITY Henne van Heeren The Microfluidics Association, NETHERLANDS 		Ses	sion 2C1 - Electrochemical Detection (continued)	
INTEGRATED CIRCUIT CHIP Wenhao Hui', Aman Lyu', Yingying Liu', Pui-In Mak', P. Martins Rui' ² , K-Meng Lei', and Yanwei Jia' ¹ University of Macau, CHINA and ² Universidade de Lisboa, PORTUGAL 10:50 POINT-OF-CARE NUCLEIC ACID TESTING WITH A ONE-STEP BRANCHED DNA-BASED BIOSENSOR Xueqi Wang and Han Wang Tsinghua University, CHINA 11:10 - 11:40 Break: Exhibit and Poster Inspection 11:20 - 11:40 Science Speed Dating Special Focus Session - Organoids Chair: Pilnam Kim, Korea Advanced Institute of Science & Technology (KAIST), KOREA Hall C 11:40 EMERGING HUMAN BRAIN ORGANOID FIELD TO MODEL EARLY DEVELOPMENT AND PATHOLOGY Leonora Bużańska Polish Academy of Sciences, POLAND 12:10 ORGANOIDS AND ORGANS-ON-A-CHIP: FROM TOXICITY TESTING TO PERSONALIZED MEDICINE Milica Radisic University of Toronto, CANADA 12:40 - 13:50 Lunch 12:45 2a - BIOCOMPATIBLE, HIGH- RESOLUTION, 3D PRINTING IN THE PRESENCE OF LUVING CELLS Henrik Akesson UpNano GmbH, AUSTRIA 13:05 2b - TWO-PHOTON-POLYMERIZATION AS THE KEY ENABLING TECHNOLOGY FOR LIFE SCIENCES Alexander Legant Nanoscribe GmbH & Co. KG, GERMANY, AUSTRIA 13:25 2c - A GENERIC MICROFLUIDIC CONNECTION SYSTEM BECOMES A REALITY Henne van Heeren The Microfluidics Association, NETHERLANDS	10:10	TRANS Yingm	SISTOR VIA EUROPIUM ION PROBE ing Xu, Peng Zhou, Terrence Simon, and Tianhong Cui	
K-Meng Lei ¹ , and Yanwei Jia ¹ ¹ University of Macau, CHINA and ² Universidade de Lisboa, PORTUGAL 10:50 POINT-OF-CARE NUCLEIC ACID TESTING WITH A ONE-STEP BRANCHED DNA-BASED BIOSENSOR Xueqi Wang and Han Wang Tsinghua University, CHINA 11:10 - 11:40 Break: Exhibit and Poster Inspection 11:20 - 11:40 Science Speed Dating Special Focus Session - Organoids Chair: Pilnam Kim, Korea Advanced Institute of Science & Technology (KAIST), KOREA Hall C 11:40 EMERGING HUMAN BRAIN ORGANOID FIELD TO MODEL EARLY DEVELOPMENT AND PATHOLOGY Leonora Bużańska Polish Academy of Sciences, POLAND 12:10 ORGANOIDS AND ORGANS-ON-A-CHIP: FROM TOXICITY TESTING TO PERSONALIZED MEDICINE Milica Radisic University of Toronto, CANADA 12:40 - 13:50 Lunch 12:45 2a - BIOCOMPATIBLE, HIGH- RESOLUTION, 3D PRINTING IN THE PRESENCE OF LIVING CELLS Henrik Akesson UDNano GribH, AUSTRIA 13:05 2b - TWO-PHOTON-POLYMERIZATION AS THE KEY ENABLING TECHNOLOGY FOR LIFE SCIENCES Alexander Legant Nanoscribe GribH & Co. KG, GERMANY, AUSTRIA 13:25 2c - A GENERIC MICROFLUIDIC CONNECTION SYSTEM BECOMES A REALITY Henne van Heeren The Microfluidics Association, NETHERLANDS	10:30	INTEGRATED CIRCUIT CHIP		
BRANCHED DNA-BASED BIOSENSOR Xueqi Wang and Han Wang Tsinghua University, CHINA 11:10 - 11:40 Break: Exhibit and Poster Inspection 11:20 - 11:40 Science Speed Dating Special Focus Session - Organoids Chair: Pilnam Kim, Korea Advanced Institute of Science & Technology (KAIST), KOREA Hall C 11:40 EMERGING HUMAN BRAIN ORGANOID FIELD TO MODEL EARLY DEVELOPMENT AND PATHOLOGY Leonora Bużańska Polish Academy of Sciences, POLAND 12:10 ORGANOIDS AND ORGANS-ON-A-CHIP: FROM TOXICITY TESTING TO PERSONALIZED MEDICINE Milica Radisic University of Toronto, CANADA 12:40 - 13:50 Lunch Lunch 11:40 Special Focus Session - Organoids ORGANOIDS AND ORGANS-ON-A-CHIP: FROM TOXICITY TESTING TO PERSONALIZED MEDICINE Milica Radisic University of Toronto, CANADA Industrial Stage 2 Auditorium 12:40 - 13:50 Lunch 11:40 Industrial Stage 2 Auditorium 12:45 2 - BIOCOMPATIBLE, HIGH- RESOLUTION, 3D PRINTING IN THE PRESENCE OF LIVING CELLS Henrik Akesson UpNano GmbH, AUSTRIA Co. KG, GERMANY, AUSTRIA </td <td></td> <td>K-Mer</td> <td>ng Lei¹, and Yanwei Jia¹</td>		K-Mer	ng Lei ¹ , and Yanwei Jia ¹	
Tsinghua University, CHINA 11:10 - 11:40 Break: Exhibit and Poster Inspection 11:20 - 11:40 Science Speed Dating Special Focus Session - Organoids Chair: Pilnam Kim, Korea Advanced Institute of Science & Technology (KAIST), KOREA Hall C 11:40 EMERGING HUMAN BRAIN ORGANOID FIELD TO MODEL EARLY DEVELOPMENT AND PATHOLOGY Leonora Bużańska Polish Academy of Sciences, POLAND 12:10 ORGANOIDS AND ORGANS-ON-A-CHIP: FROM TOXICITY TESTING TO PERSONALIZED MEDICINE Milica Radisic University of Toronto, CANADA 12:40 - 13:50 Lunch Industrial Stage 2 Auditorium 12:45 2a - BIOCOMPATIBLE, HIGH- RESOLUTION, 3D PRINTING IN THE PRESENCE OF LUVING CELLS Henrik Akesson UpNano GmbH, AUSTRIA 13:05 2b - TWO-PHOTON-POLYMERIZATION AS THE KEY ENABLING TECHNOLOGY FOR LIFE SCIENCES Alexander Legant Nanoscribe GmbH & Co. KG, GERMANY, AUSTRIA 13:25 2c - A GENERIC MICROFLUIDIC CONNECTION SYSTEM BECOMES A REALITY Henne van Heeren The Microfluidics Association, NETHERLANDS	10:50	BRAN	CHED DNA-BASED BIOSENSOR	
11:20 - 11:40 Science Speed Dating Special Focus Session - Organoids Chair: Pilnam Kim, Korea Advanced Institute of Science & Technology (KAIST), KOREA Hall C 11:40 EMERGING HUMAN BRAIN ORGANOID FIELD TO MODEL EARLY DEVELOPMENT AND PATHOLOGY Leonora Bużańska Polish Academy of Sciences, POLAND 12:10 ORGANOIDS AND ORGANS-ON-A-CHIP: FROM TOXICITY TESTING TO PERSONALIZED MEDICINE Milica Radisic University of Toronto, CANADA 12:40 - 13:50 Lunch 12:45 13:50 Lunch 13:50 Lunch			0	
Special Focus Session - Organoids Chair: Pilnam Kim, Korea Advanced Institute of Science & Technology (KAIST), KOREA Hall C 11:40 EMERGING HUMAN BRAIN ORGANOID FIELD TO MODEL EARLY DEVELOPMENT AND PATHOLOGY Leonora Bużańska Polish Academy of Sciences, POLAND 12:10 ORGANOIDS AND ORGANS-ON-A-CHIP: FROM TOXICITY TESTING TO PERSONALIZED MEDICINE Milica Radisic University of Toronto, CANADA 12:40 - 13:50 Lunch Industrial Stage 2 Auditorium 12:45 2a - BIOCOMPATIBLE, HIGH- RESOLUTION, 3D PRINTING IN THE PRESENCE OF LIVING CELLS Henrik Akesson UpNano GmbH, AUSTRIA 13:05 2b - TWO-PHOTON-POLYMERIZATION AS THE KEY ENABLING TECHNOLOGY FOR LIFE SCIENCES Alexander Legant Nanoscribe GmbH & Co. KG, GERMANY, AUSTRIA 13:25 2c - A GENERIC MICROFLUIDIC CONNECTION SYSTEM BECOMES A REALITY Henne van Heeren The Microfluidics Association, NETHERLANDS	11:10 -	11:4 <mark>0</mark>	Break: Exhibit and Poster Inspection	
Chair: Pinam Kim, Korea Advanced Institute of Science & Technology (KAIST), KOREA Hall C 11:40 EMERGING HUMAN BRAIN ORGANOID FIELD TO MODEL EARLY DEVELOPMENT AND PATHOLOGY Leonora Bużańska Polish Academy of Sciences, POLAND 12:10 ORGANOIDS AND ORGANS-ON-A-CHIP: FROM TOXICITY TESTING TO PERSONALIZED MEDICINE Milica Radisic University of Toronto, CANADA 12:40 - 13:50 Lunch Lunch Industrial Stage 2 Auditorium 12:45 2a - BIOCOMPATIBLE, HIGH- RESOLUTION, 3D PRINTING IN THE PRESENCE OF LIVING CELLS Henrik Akesson UpNano GmbH, AUSTRIA 13:05 2b - TWO-PHOTON-POLYMERIZATION AS THE KEY ENABLING TECHNOLOGY FOR LIFE SCIENCES Alexander Legant Nanoscribe GmbH & Co. KG, GERMANY, AUSTRIA 13:25 2c - A GENERIC MICROFLUIDIC CONNECTION SYSTEM BECOMES A REALITY Henne van Heeren The Microfluidics Association, NETHERLANDS	11:20 -	11:40	Science Speed Dating	
 11:40 EMERGING HUMAN BRAIN ORGANOID FIELD TO MODEL EARLY DEVELOPMENT AND PATHOLOGY Leonora Bużańska Polish Academy of Sciences, POLAND 12:10 ORGANOIDS AND ORGANS-ON-A-CHIP: FROM TOXICITY TESTING TO PERSONALIZED MEDICINE Milica Radisic University of Toronto, CANADA 12:40 - 13:50 Lunch 12:40 - 13:50 Lunch 12:45 2a - BIOCOMPATIBLE, HIGH- RESOLUTION, 3D PRINTING IN THE PRESENCE OF LIVING CELLS Henrik Akesson UpNano GmbH, AUSTRIA 13:05 2b - TWO-PHOTON-POLYMERIZATION AS THE KEY ENABLING TECHNOLOGY FOR LIFE SCIENCES Alexander Legant Nanoscribe GmbH & Co. KG, GERMANY, AUSTRIA 13:25 2c - A GENERIC MICROFLUIDIC CONNECTION SYSTEM BECOMES A REALITY Henne van Heeren The Microfluidics Association, NETHERLANDS 		Cha	ir: Pilnam Kim, Korea Advanced Institute of Science &	
DEVELOPMENT AND PATHOLOGY Leonora Bużańska Polish Academy of Sciences, POLAND 12:10 ORGANOIDS AND ORGANS-ON-A-CHIP: FROM TOXICITY TESTING TO PERSONALIZED MEDICINE Milica Radisic University of Toronto, CANADA 12:40 - 13:50 Lunch 12:40 - 13:50 Lunch 12:45 2a - BIOCOMPATIBLE, HIGH- RESOLUTION, 3D PRINTING IN THE PRESENCE OF LIVING CELLS Henrik Akesson UpNano GmbH, AUSTRIA 13:05 2b - TWO-PHOTON-POLYMERIZATION AS THE KEY ENABLING TECHNOLOGY FOR LIFE SCIENCES Alexander Legant Nanoscribe GmbH & Co. KG, GERMANY, AUSTRIA 13:25 2c - A GENERIC MICROFLUIDIC CONNECTION SYSTEM BECOMES A REALITY Henne van Heeren The Microfluidics Association, NETHERLANDS			Hall C	
TO PERSONALIZED MEDICINE Milica Radisic University of Toronto, CANADA 12:40 - 13:50 Lunch Industrial Stage 2 Auditorium 12:45 2a - BIOCOMPATIBLE, HIGH- RESOLUTION, 3D PRINTING IN THE PRESENCE OF LIVING CELLS Henrik Akesson UpNano GmbH, AUSTRIA 13:05 2b - TWO-PHOTON-POLYMERIZATION AS THE KEY ENABLING TECHNOLOGY FOR LIFE SCIENCES Alexander Legant Nanoscribe GmbH & Co. KG, GERMANY, AUSTRIA 13:25 2c - A GENERIC MICROFLUIDIC CONNECTION SYSTEM BECOMES A REALITY Henne van Heeren The Microfluidics Association, NETHERLANDS	11:40	DEVEL Leono	LOPMENT AND PATHOLOGY ora <mark>Bużańska</mark>	
Industrial Stage 2 Auditorium 12:45 2a - BIOCOMPATIBLE, HIGH- RESOLUTION, 3D PRINTING IN THE PRESENCE OF LIVING CELLS Henrik Akesson UpNano GmbH, AUSTRIA 13:05 2b - TWO-PHOTON-POLYMERIZATION AS THE KEY ENABLING TECHNOLOGY FOR LIFE SCIENCES Alexander Legant Nanoscribe GmbH & Co. KG, GERMANY, AUSTRIA 13:25 2c - A GENERIC MICROFLUIDIC CONNECTION SYSTEM BECOMES A REALITY Henne van Heeren The Microfluidics Association, NETHERLANDS	12:10	TO PE Milica	RSONALIZED MEDICINE a Radisic	
Auditorium 12:45 2a - BIOCOMPATIBLE, HIGH- RESOLUTION, 3D PRINTING IN THE PRESENCE OF LIVING CELLS Henrik Akesson UpNano GmbH, AUSTRIA 13:05 2b - TWO-PHOTON-POLYMERIZATION AS THE KEY ENABLING TECHNOLOGY FOR LIFE SCIENCES Alexander Legant Nanoscribe GmbH & Co. KG, GERMANY, AUSTRIA 13:25 2c - A GENERIC MICROFLUIDIC CONNECTION SYSTEM BECOMES A REALITY Henne van Heeren The Microfluidics Association, NETHERLANDS	12:40 -	13:50	Lunch	
 12:45 2a - BIOCOMPATIBLE, HIGH- RESOLUTION, 3D PRINTING IN THE PRESENCE OF LIVING CELLS Henrik Akesson UpNano GmbH, AUSTRIA 13:05 2b - TWO-PHOTON-POLYMERIZATION AS THE KEY ENABLING TECHNOLOGY FOR LIFE SCIENCES Alexander Legant Nanoscribe GmbH & Co. KG, GERMANY, AUSTRIA 13:25 2c - A GENERIC MICROFLUIDIC CONNECTION SYSTEM BECOMES A REALITY Henne van Heeren The Microfluidics Association, NETHERLANDS 			Industrial Stage 2	
 PRESENCE OF LIVING CELLS Henrik Akesson UpNano GmbH, AUSTRIA 13:05 2b - TWO-PHOTON-POLYMERIZATION AS THE KEY ENABLING TECHNOLOGY FOR LIFE SCIENCES Alexander Legant Nanoscribe GmbH & Co. KG, GERMANY, AUSTRIA 13:25 2c - A GENERIC MICROFLUIDIC CONNECTION SYSTEM BECOMES A REALITY Henne van Heeren The Microfluidics Association, NETHERLANDS 			Auditorium	
TECHNOLOGY FOR LIFE SCIENCES Alexander Legant Nanoscribe GmbH & Co. KG, GERMANY, AUSTRIA 13:25 2c - A GENERIC MICROFLUIDIC CONNECTION SYSTEM BECOMES A REALITY Henne van Heeren The Microfluidics Association, NETHERLANDS	12:45	PRESE Henrik	ENCE OF LIVING CELLS Akesson	
A REALITY Henne van Heeren The Microfluidics Association, NETHERLANDS	13:05	TECHI Alexar	NOLOGY FOR LIFE SCIENCES Inder Legant	
25	13:25	A REA Henne	LITY van Heeren	
			25	

(Session 2A3 - Vascularization-on-a-Chip Chair: Yi-Chin Toh, <i>Queensland University of Technology, AUSTRALIA</i>
	Hall C
13:50	A VASCULARIZED MULTI-COMPOSITION TUMOR ARRAY BIOPRINTED ON A MICROFLUIDIC CELL CULTURE AND DRUG SCREENING SYSTEM FOR MULTIVARIABLE ANALYSIS Gihyun Lee, Soo Jee Kim, and Je-Kyun Park Korea Advanced Institute of Science and Technology (KAIST), KOREA
14:10	PERSONALIZED ARTERIAL-WALL-ON-A-CHIP FOR ASSESSMENT OF VASCULAR DYSFUNCTION AND RISK STRATIFICATION IN TYPE 2 DIABETES MELLITUS Hiromi Takahashi ¹ , Hong Boon Ong ¹ , Chengxun Su ¹ , Rijan Gurung ² , Andrew Mark Choong ^{2,3} , Binkoo Dalan ⁴ , Roger Foo ^{2,3} , Derek Hausenloy ^{5,6} , and Han Wei Hou ^{1,4} ¹ Nanyang Technological University, SINGAPORE, ² National University of Singapore, SINGAPORE, ³ National University Heart Centre, SINGAPORE, ⁴ Tan Tock Seng Hospital, SINGAPORE, ⁵ Duke-National University of Singapore Medical School, SINGAPORE, and ⁶ National Heart Research Institute, SINGAPORE
14:30	A VASCULAR MICROPHYSIOLOGICAL SYSTEM WITH A DEFINED INJURY SITE FOR COAGULATION Halston Deal ^{1,2} , Jack Twiddy ^{1,2} , Kimberly Nellenbach ^{1,2} , Anastasia Sheridan ^{1,2} , Ashley Brown ^{1,2} , and Michael Daniele ^{1,2} ¹ North Carolina State University, USA and ² University of North Carolina, Chapel Hill, USA
14:50	ENGINEERING AUTOLOGOUS VASCULARIZED THROMBUS IMPLANTS FOR ENHANCING CUTANEOUS WOUND HEALING Su Hyun Jung, Bong Hwan Jang, Seyong Kwon, Sung Jin Park, Tae-Eun Park, and Joo H. Kang

	Session 2B3 - Droplets Chair: Aaron Wheeler, <i>University of Toronto, CANADA</i>	
	Auditorium	
13:50	HIGH-THROUGHPUT DROPLET-PRINTING OF CONCENTRATION GRADIENTS FOR MULTIMODAL FLUORESCENCE- AND MALDI-MS ANALYSIS Maximilian Breitfeld, Claudius L. Dietsche, Mario A. Saucedo-Espinosa, Simon F. Berlanda, and Petra S. Dittrich ETH Zürich, SWITZERLAND	
14:10	DIGITAL DETECTION OF TUMOR-DERIVED EXTRACELLULAR VESICLES VIA CHARGE-INDUCED FUSION Elizabeth Maria Clarissa ^{1,2} , Sumit Kumar ^{1,2} , and Yoon-Kyoung Cho ^{1,2} ¹ Ulsan National Institute of Science and Technology (UNIST), KOREA and ² Institute of Basic Science (IBS), KOREA	
14:30	STIMULI-RESPONSIVE DNA ORIGAMI MICROCAPSULES Nagi Yamashita ¹ , Marcos K. Masukawa ¹ , Mayumi Chano ¹ , Yusuke Sato ² , Kanta Tsumoto ³ , Kenichi Yoshikawa ⁴ , and Masahiro Takinoue ¹ ¹ Tokyo Institute of Technology, JAPAN, ² Kyushu Institute of Technology, JAPAN, ³ Mie University, JAPAN, and ⁴ Kyoto University, JAPAN	
14:50	VOICEPRINT FOR IDENTIFYING DRIPPING-JETTING TRANSITION IN A COAXIAL MICROFLUIDIC DEVICE Peng-Nian Chen, Jin-Jia Hu, and Chia-Hung D. Tsai National Yang Ming Chiao Tung University, TAIWAN	
	Session 2C3 - Bacteria Analysis Chair: Catherine Villard, CNRS, FRANCE	
	Ballroom B	
13:50	MICROFLUIDIC CHANNELS FOR ANALYSIS OF FLAGELLAR WRAPPING MOTION OF BACTERIA Yoshiki Shimada, Aoba Yoshioka, Daisuke Nakane, and Tetsuo Kan University of Electro-Communications, JAPAN	
14:10	A NOVEL OPTICAL-ELECTROCHEMICAL LAB-ON-A-CHIP FOR BIOLOGICAL BEHAVIOR ACTIVATION AND MONITORING IN SINGLE BACTERIAL CELLS Daniel Kaufman ¹ , Chen Chen-Yu ² , Tsao Chen-Yu ² , Zhao Zhiling ² , Avia Lavon ¹ , Gregory F. Payne ² , William E. Bentley ² , and Hadar S. Ben-Yoav ¹ ¹ Ben-Gurion University in the Negev, ISRAEL and ² University of Maryland, USA	

27

		Session 2C3 - Bacteria Analysis (continued)
14:30	FOR A GENET Po-Hsu	ROFLUIDIC 96-WELL ELECTROPORATION DEVICE UTOMATED, HIGH-THROUGHPUT BACTERIAL IC ENGINEERING un Huang, Sijie Chen, and Cullen R. Buie chusetts Institute of Technology, USA
14:50	REAL-TIME IN-SITU BACTERIAL GROWTH MONITORING USING MINIATURIZED MRI SYSTEM Qi Zhou ¹ , Shuhao Fan ¹ , Ka-Meng Lei ¹ , Donhee Ham ² , Rui P. Martins ^{1,3} , and Pui-In Mak ¹ ¹ University of Macau, MACAO, ² Harvard University, USA, and ³ Universidade de Lisboa, PORTUGAL	
15:10 -	17:10	Poster Session 2 and Exhibit Inspection Presentations are listed by topic category with their assigned number starting on page 45.
16:40 -	17:10	Break
	Chair: A	Session 2A4 - Cell/Organ-on-a-Chip I Ibert van den Berg, <i>University of Twente, NETHERLANDS</i>
		Hall C
17:10	CELL A Agnie	DTE PRESENTATION AND ORGAN-ON-CHIP APPROACHES IN CANCER RESEARCH szka Żuchowska w University of Technology, POLAND
17:40	UNIVERSAL, HIGH-TROUGHPUT PLATFORM FOR THE MONITORING OF CELL BEHAVIOURS CONTROLING FUNDAMENTAL CELL INTERACTIONS Enrique Azuaje-Hualde, Naiara Lartitegi-Meneces, Juncal Alonso-Cabrera, Yara Alvarez Braña, Marian M. de Pancorbo, Fernando Benito-Lopez, and Lourdes Basabe-Desmonts	
	Univer	sity of the Basque Country, SPAIN
18:00	SEMI TUBULAR ORGAN-ON-CHIP WITH TUBELESS PERFUSION Blanca del Pozo ¹ , Marta Ollé ² , Jonatan Cucala ² , Lourdes Gombay ² , Pooya Azizian ¹ , and Joan M. Cabot ¹ ¹ Leitat Technological Center, SPAIN and ² ReadyCell SL, SPAIN	
18:20	SPHEF Jooyou ¹ Ulsan	MICROFLUIDIC PLATFORM FOR CO-CULTURING TUMOR ROIDS AND ENDOTHELIAL CELLS IN A 3D ENVIRONMENT ung Ro ^{1,2} , Junyoung Kim ^{1,2} , and Yoon-Kyoung Cho ^{1,2} National Institute of Science and Technology (UNIST), KOREA Institute for Basic Science (IBS), KOREA

Chai	Session 2B4 - Optical Detection ir: Fernando Benito López, <i>University of the Basque Country, SPAIN</i>
	Auditorium
17:10	KEYNOTE PRESENTATION ADVANCEMENTS IN MICROFLUIDICS: CELL BIOPSIES, DIAGNOSTICS, AND PROGRAMMABLE MATTER Wouter van der Wijngaart KTH Royal Institute of Technology, SWEDEN
17:40	NON-INVASIVE INTERFERENCE-BASED PROBE OF THE NANO-SCALE SURFACE ROUGHNESS OF LIVING CELLS Jose C. Contreras-Naranjo, Arul Jayaraman, and Victor M. Ugaz Texas A&M University, USA
18:00	CRITICALLY AMPLIFIED HYDROGEL SENSORS FOR BIOCHEMICAL DETECTION Haitao Zhao ^{1,2} , Sijun Pan ² , and Huilin Shao ² ¹ Northwestern Polytechnical University, CHINA and ² National University of Singapore, SINGAPORE
18:20	DUAL-TARGET MICROFLUIDIC SYSTEM INTEGRATED WITH AN OPTICAL DETECTION MODULE FOR AUTOMATIC DIAGNOSIS OF RHEUMATOID ARTHRITIS Kuan-Yu Chen ¹ , Gwo-Bin Lee ¹ , Yi-Cheng Tsai ¹ , Feng-Chih Kuo ² , Mel S. Lee ³ , and Chih-Chien Hu ⁴ ¹ National Tsing Hua University, TAIWAN, ² Kaohsiung Chang Gung Memorial Hospital, TAIWAN, ³ Paochien Hospital, TAIWAN, and ⁴ Chang Gung Memorial Hospital, TAIWAN
	Session 2C4 - Single Cell Analysis III Chair: Thomas Laurell, <i>Lund University, SWEDEN</i>
	Ballroom B
17:10	KEYNOTE PRESENTATION MICROFLUIDIC PLATFORMS FOR IMMUNOTHERAPY AND GENOME EDITING Aram Chung Korea University, KOREA
17:40	MULTI-STEP DROPLET MICROFLUIDIC PLATFORM FOR HIGH-CONTENT SINGLE-CELL SEQUENCING Tomasz S. Kaminski ^{1,2} , Joachim De Jonghe ^{2,3} , and Florian Hollfelder ² ¹ University of Warsaw, POLAND, ² University of Cambridge, UK, and ³ Francis Crick Institute, UK
18:00	AN AUTOMATED SINGLE-CELL MICROFLUIDIC PLATFORM FOR MONOCLONAL ANTIBODY DISCOVERY Fatemeh Ahmadi ¹ , Hao Tran ¹ , Natasha Letourneau ¹ , Samuel R. Little ¹ , Annie Fortin ² , Anna Moraitis ² , and Steve C.C. Shih ¹ ¹ Concordia University, CANADA and ² National Research Council Canada, CANADA

TUESDAY Program

TUESDAY PROGRAM

CONTACT & NON-CONTACT IN ALL M2-AUTOMATION INSTRUMENTS

WEDNESDAY PROGRAM

W	EDNESDA	Y AT A GL	ANCE
08:15-08:30	Announcements		
08:30-09:15	Plenary Presentatior Bogusław Buszewski	∎ IV – Mikolaj Kopernik Univ	versity Torun, POLAND
09:15-09:30	Transition		
09:30-10:30	Session 3A1 Cell/Organ- on-a-Chip II	Session 3B1 Biomolecular Detection II	Session 3C1 Micromixers & Microreactors
10:30-11:00	Break: Exhibit and P	oster Inspection	
11:00-12:00	Session 3A2 Nucleid Acid Analysis	Session 3B2 Biohybrid Microrobots	Session 3C2 Separation
12:00-13:05	Lunch		
12:05-12:45	Industrial Stage 3		
13:05-13:50	Plenary Presentation V Lydia L. Sohn – <i>University of California, Berkeley, USA</i>		
13:50-14:00	MicroTAS 2024 Anno	ouncement	
14:00-16:00	Poster Session 3 and	d Exhibit Inspection	
15:30-16:00	Break		
16:00-17:30	Session 3A4 Neurobiology & Neuroscience	Session 3B4 Point-of-Care	Session 3C4 3D Printing
	KEYNOTE Ashley E. Ross	KEYNOTE Jacqueline Linnes	KEYNOTE Rosanne Guijt
19:00-22:00	Conference Banquet		

WEDNESDAY, 18 OCTOBER

08:15 - 08:30 Announcements

	Session 3A1 - Cell/Organ-on-a-Chip II Chair: Thomas Gervais, <i>Polytechnique Montreal, CANADA</i>
	Hall C
09:30	A CELL WRAPPING SEEDING TECHNIQUE TO CONSTRUCT TUBULAR ORGAN-ON-A-CHIP MODELS Jing Nie, Sha Lou, Andreas M.A.O. Pollet, Manon van Vegchel, Carlijn Bouten, Jaap M.J. den Toonder Eindhoven University of Technology, NETHERLANDS
09:50	USING SELF-ASSEMBLY AND MIGRATION TO FORM TUBULAR TISSUE ENGINEERED IN VITRO MODELS OF BIOLOGICAL BARRIERS Seyedaydin Jalali and Ponnambalam R. Selvaganapathy McMaster University, CANADA
10:10	NANOWIRE EMBEDDED CONDUCTING DIAPHRAGMS FOR COUPLING ELECTRICAL CUES WITH MECHANICAL STIMULATION TO PROMOTE INTERCELLULAR COMMUNICATION Abdullah-Bin Siddique, Aditya Rane, and Nathan Swami University of Virginia, USA
CI	Session 3B1 - Biomolecular Detection II hair: Gwo-Bin "Vincent" Lee, National Tsing Hua University, TAIWAN
	Auditorium
09:30	TWO-STAGE TUBERCULOSIS DIAGNOSTICS FROM A SINGLE SAMPLE: COMBINING CENTRIFUGAL MICROFLUIDICS AT THE POINT-OF-CARE WITH SUBSEQUENT COMPREHENSIVE NGS ANTIBIOTIC RESISTANCE PROFILING Judith Schlanderer ¹ , Jan Lüddecke ^{1,2} , Andrey Golubov ⁴ , Wolfgang Grasse ⁵ , Thomas A. Kohl ⁶ , Christoph Metzger-Boddien ⁵ , Stefan Niemann ⁶ , Claudia Pilloni ⁴ , Sara Plesnik ⁴ , Bijendra Raya ⁷ , Bhawana Shresta ⁷ , Roland Zengerle ^{1,2} , Markus Beutler ⁴ , Harald Hoffmann ^{3,4} , and Nils Paust ^{1,2} ¹ Hahn-Schickard, GERMANY, ² University of Freiburg, GERMANY, ³ SYNLAB Gauting, GERMANY, ⁴ IML Red GmbH, GERMANY, ⁵ gerbion, GERMANY, ⁶ Research Center Borstel, GERMANY, and ⁷ Nepal Anti-Tuberculosis Association, NEPAL
09:50	COMPETITVE PCR PLATFORM FOR PRECISE NUCLEIC ACID QUANTIFICATION Reya Ganguly and Chang-Soo Lee Chungnam National University, KOREA
10:10	INTEGRATION OF ENZYMATICDNA SYNTHESIS AND SEQUENCING ON DIGITAL MICROFLUIDICS FOR AUTOMATIC INFORMATION STORAGE Huimin Zhang Xiamen university, CHINA

WEDNESDAY PROGRAM

	Session 3C1 - Micromixers & Microreactors Chair: Per Augustsson, Lund University, SWEDEN
	Ballroom B
09:30	SPATIOTEMPORALLY GENERATED MICROVORTEXES WEAVE LAMINAR FLOW Makoto Saito, Niko Kimura, Yoko Yamanishi, and Shinya Sakuma Kyushu University, JAPAN
0 <mark>9:5</mark> 0	DNA-POWERED MULTITARGET STIMULI-RESPONSIVE GEL SENSOR FOR THE SENSING OF HISTAMINE AND CAFFEINE Satofumi Kato ¹ , Yurika Ishiba ¹ , Masahiro Takinoue ² , and Hiroaki Onoe ¹ ¹ Keio University, JAPAN and ² Tokyo Institute of Technology, JAPAN
10:10	PREPARATION OF MONODISPERSE DNA GELS USING VIBRATION-INDUCED FLOW Zhitai Huang ¹ , Kanji Kaneko ¹ , Ryotaro Yoneyama ¹ , Takeshi Hayakawa ¹ , Masahiro Takinoue ² , and Hiroaki Suizuki ¹ ¹ Chuo University, JAPAN and ² Tokyo Institute of Technology, JAPAN
10:30 -	11:00 Break: Exhibit and Poster Inspection
	Session 3A2 - Nucleid Acid Analysis Chair: Jean-Louis Viovy, Institut Curie/CNRS, FRANCE
	Hall C
11:00	UTILIZING SPATIALLY-RESOLVED AND MULTIPLEXED MICRORNA QUANTIFICATION TO PREDICT DRUG RESISTANCE IN BRCA1 MUTANT TUMORS AND PREDICT THE EFFICACY OF COMBINATION THERAPY Omar N. Mohd ¹ , Yu J. Heng ² , Gerburg M. Wulf ² , Frank J. Slack ² , and Patrick S. Doyle ¹ ¹ Massachusetts Institute of Technology, USA and ² Harvard Medical School, USA
11:20	MICROFLUIDICS-MEDITATED CRISPR/CAS9 DELIVERY: THE DROPLET CELL PINCHER (DCP) PLATFORM FOR EFFICIENT GENOME EDITING You-Jeong Kim, Da Young Yun, Ha-Sung Lee, Cheulhee Jung, and Aram J. Chung Korea University, KOREA
11:40	EMULSION-FREE DIGITAL PCR WITH PERMEABILITY-ENGINEERED HYDROGEL CAPSULES Jie Li and Yifan Liu Shanghaitech University, CHINA

WEDNESDAY

WEDNESDAY PROGRAM

	Session 3B2 - Biohybrid Microrobots Chair: Jens Ducrée, <i>Dublin City University, IRELAND</i>
	Auditorium
11:00	AN ANTAGONISTIC PAIR OF 3D CARDIAC RING TISSUES FOR SELF-BEATING BIOHYBRID ROBOT Tomohiro Morita, Minghao Nie, and Shoji Takeuchi University of Tokyo, JAPAN
11:20	ELEVATED VWF LEVELS DRIVE THROMBUS INSTABILITY Ava M. Obenaus ¹ , Dang Truong ² , Junmei Chen ³ , José A. López ³ , and Nathan J. Sniadecki ¹ ¹ University of Washington, USA, ² University of Washington Bothell, USA, and ³ Bloodworks Northwest Research Institute, USA
11:40	LIGHT CONTROLLED BIOHYBRID MICROBOTS Nicola Pellicciotta ^{1,2} , Ojus S. Bagal ¹ , Viridiana C. Sosa ¹ , Giacomo Frangipane ^{1,2} , Gaszton Vizsnyiczai ³ , and Roberto Di Leonardo ^{1,2} ¹ Sapienza University of Rome, ITALY, ² CNR Institute of Nanotechnology, ITALY, and ³ Eötvös Loránd Research Network, HUNGARY
	Session 3C2 - Separation Chair: Jonas Tegenfeldt, <i>Lund University, SWEDEN</i>
	Ballroom B
11:00	DLD-BASED SINGLE CELL MASS CYTOMETRY Yingqi Yang, Junwen Zhu, Huichao Chai, Peng Zhao, and Wenhui Wang <i>Tsinghua University, CHINA</i>
11:20	CONTINUOUS-FLOW SIZE FRACTIONATION OF SUBMICRON Particles and extracellular vesicles with Two-dimensional electrophoresis in an Artificial sieving array
	Yang Bu, Jinhui Wang, Sheng Ni, Zechen Lu, Yusong Guo, and Levent Yobas Hong Kong University of Science and Technology, CHINA
11:40	ENGINEERING HIGH-THROUGHPUT ELECTROKINETIC FILTRATION FOR BIOMOLECULES ENRICHMENT Mingyang Cui, Eric M. Wynne, and Jongyoon Han Massachusetts Institute of Technology, USA
12:00 - 1	

WEDNESDAY PROGRAM

		Industrial Stage 3 Chair: Frankie Myers, <i>Mosaic Design Labs, USA</i>	
		Auditorium	
12:05	3D C Matt	RIMO, BIOENGINNEERING TOOL FOR 2D AND EELLULAR MODELS hieu Opitz ole – Sygnis, FRANCE	
12:25	CMC Chris	IULTI-ELECTRODE ARRAYS FOR IS BIOSENSORS stine Dufour IB MEMS Foundry GmbH, GERMANY	
	Chair	Plenary Presentation V Séverine Le Gac, University of Twente, NETHERLAND	S
		Hall C	
13:05	Lydia	DFLUIDICS FOR ASSESSING BREAST CANCER SUSC L. Sohn sity of California, Berkeley, USA	EPTIBILIT
		MicroTAS 2024 Announcement	
		Hall C	
13:50	• Davi	Conference Chairs d Juncker, <i>McGill University, CANADA</i> n Wheeler, <i>University of Toronto, CANADA</i>	
14:00 -	16:00	Poster Session 3 and Exhibit Inspection Presentations are listed by topic category with their assigned number starting on page 45.	
15:30 -	16:00	Break	
-	-		<i>.</i>
10.00	THE STREET	The statility and a statistical state	

Photo provided by MCK International Congress Centre Katowice website.

Session 3A4 - Neurobiology & Neuroscience Chair: Tza-Huei (Jeff) Wang, Johns Hopkins University, USA Hall C 16:00 **KEYNOTE PRESENTATION** EX VIVO ORGAN-ON-CHIP PLATFORMS FOR SENSING NEURON-IMMUNE COMMUNICATION Ashley E. Ross University of Cincinnati, USA 16:30 **NEURAL STEM CELL SINGLE-CELL ISOLATION USING THE OPTOELECTRONIC MICROROBOT** Mohamed Elsayed¹, Harrison Edwards¹, Filip Stojic¹, Mahmoud A. Sakr¹, Christopher Bendkowski², Xi Chen^{1,3}, Laurent Menillo², Shuailong Zhang⁴, Michael Shaw², Cindi Morshead¹, and Aaron Wheeler¹ ¹University of Toronto, CANADA, ²University College London, UK, ³Harbin Institute of Technology, CHINA, and ⁴Beijing Institute of Technology, CHINA MONITORING THE MITOCHONDRIAL NETWORK IN SH-SY5Y 16:50 NEURONAL-LIKE CELLS UNDER THE INFLUENCE OF POTENTIAL DRUGS IN NEURODEGENERATIVE DISEASES Damian Woznica, Ewelina Kalwarczyk, Julia Anchimowicz, Weronika Switlik, and Slawomir Jakiela Warsaw University of Life Sciences, POLAND 17:10 ELECTROCEUTICAL THERAPEUTIC TECHNOLOGY FOR AN INTRACTABLE PERIPHERAL NEUROPATHY USING A HIGH-THROUGHPUT SCREENING PLATFORM Aseer Intisar¹, Hyun Young Shin^{1,2}, Hyun Gyu Kang¹, Woon-Hae Kim^{1,2}, Hanwoong Woo¹, Min Young Kim¹, Yu Seon Kim¹, Yun Jeoung Mo¹, Yun-II Lee¹, and Minseok S. Kim^{1,2} ¹Daegu Gyeongbuk Institute of Science & Technology (DGIST), KOREA and ²CTCELLS Corp., KOREA Session 3B4 - Point-of-Care Chair: Michal Chudy, Warsaw University of Technology, POLAND Auditorium **KEYNOTE PRESENTATION** 16:00 PAPER-BASED MOLECULAR DIAGNOSTICS FOR PATHOGEN **DETECTION AT THE EXTREME POINTS-OF-CARE Jacqueline Linnes** Purdue University, USA

37

WEDNESDAY PROGRAM

Session 3B4 - Point-of-Care (continued)		
16:30	INTEGRATING A CHIMERIC BINJARI VIRUS NANOTECHNOLOGY INTO PAPER-BASED ASSAYS FOR POC DETECTION OF FLAVIVIRAL INFECTIONS IN VETERINARY APPLICATIONS Ryan A. Johnston ¹ , Gervais Habarugira ¹ , Sally Isberg ¹ , Jessica Harrison ¹ , Mahali Morgan ¹ , Lorna Melville ¹ , Steven Davis ¹ , Christopher Howard ¹ , Charles Henry ² , Paul Hick ¹ , Peter Kirkland ¹ , Helle Bielefeldt-Ohmann ¹ , Roy A Hall ¹ , and Jody Hobson-Peters ¹ ¹ University of Queensland, AUSTRALIA and ² Colorado State University, USA	
16:50	ORIGAMI PAPER-BASED IMMUNOASSAY DEVICE WITH CRISPR/CAS12A SIGNAL AMPLIFICATION Hikaru Suzuki, Guodong Tong, Yuki Hiruta, and Daniel Citterio <i>Keio University, JAPAN</i>	
17:10	LAMP-MEDIATED CRISPR/CAS12A REACTION ON SSDNA IMMOBILIZED ITO-BASED EG-FET FOR RAPID HEPATITIS C VIRUS DETECTION Hsin-Ying Ho, Wei-Sin Kao, Ling-Shan Yu, and Che-Hsin Lin National Sun Yat-sen University, TAIWAN	
	Session 3C4 - 3D Printing Chair: Michael Breadmore, <i>University of Tasmania, AUSTRALIA</i> Ballroom B	
16:00	KEYNOTE PRESENTATION 3D PRINTING MEMBRANE INTEGRATED DEVICES Rosanne Guijt Deakin University, AUSTRALIA	
16:30	TUNA STEP: A TUNABLE STEP EMULSIFICATION FOR DYNAMIC CONTROL OF DROPLET VOLUME TO 3D PRINT FUNCTIONALLY GRADED MATERIALS Francesco Nalin ¹ , Maria Celeste Tirelli ¹ , Witold Postek ² , Piotr Garstecki ¹ , and Marco Costantini ¹ ¹ Polish Academy of Sciences, POLAND and	
	² Broad institute of MIT and Harvard, USA	
16:50	DIGITAL MANUFACTURING OF MICROFLUIDIC SYSTEMS USING ULTRALOW-COST LCD PHOTOPOLYMERIZATION 3D PRINTERS FOR WIDESPREAD ADOPTION Houda Shafique, Vahid Karamzadeh, Yonatan Morocz, Andy Ng, and David Juncker McGill University, CANADA	
17:10		
17.10	HYBRID BIOFABRICATION OF MULTILAYERED HIGH-RESOLUTION CONSTRUCTS USING NATURAL AND LOW-VISCOSITY BIOINKS Soo Jee Kim, Gihyun Lee, and Je-Kyun Park Korea Advanced Institute of Science and Technology (KAIST), KOREA	

WEDNESDAY PROGRAM

Conference Banquet

Spodek

19:00 - 22:00

No conference is complete without a banquet. This year's banquet will be held in one of the most recognizable buildings in Poland, which is the "Spodek" in Katowice.

As of the printing of this program, there are a few tickets remaining for purchase. Please visit the Onsite Conference Registration Desk for availability.

Where scientists empower society

THURSDAY PROGRAM

	HURSDAY	AT A GLA	ANCE
08:30-09:15	Plenary Presentation VI Artur Chmielewski – National Aeronautics and Space Administration (NASA), USA and California Institute of Technology, USA		
09:15-09:35	Microsystems & Nanoengineering/Springer Nature – Test of Time Award		
09:35-09:50	Transition		
09:50-11:20	Session 4A1 Cell-on-a-Chip & Pathogens	Session 4B1 Microvalves & Delivering	Session 4C1 Space Exploration
	KEYNOTE Krzysztof Pyrć	KEYNOTE David Juncker	KEYNOTE Lourdes Basabe
11:20-11:50	Break and Exhibit In	spection	
11:50-12:30	 Awards Ceremony CHEMINAS – Young Researcher Poster Awards Royal Society of Chemistry/Lab on a Chip – Widmer Poster Award Sensors (MDPI) – Outstanding Sensors and Actuators, Detection Technologies Poster Award IMT Masken und Teilungen AG – Microfluidics on Glass Poster Award NIST and Lab on a Chip – Art in Science Award Biomicrofluidics (AIP) – Best Paper Awards Elsevier Sensors and Actuators B. Chemical – Best Paper Award 		
	 Microsystems & Nanoengineering/Springer Nature – Best Talk Award 		
12:30-12:45	Closing Remarks		
12:45	Conference Adjourns	3	

THURSDAY, 19 OCTOBER

Plenary Presentation VI

Chair: Jan Dziuban, Wroclaw University of Science and Technology, POLAND

Hall C

08:30 HOW MICRODEVICES REVOLUTIONIZE DEEP SPACE EXPLORATION Artur Chmielewski National Aeronautics and Space Administration (NASA), USA and California Institute of Technology, USA

THURSDAY

THURSDAY PROGRAM

	Microsystems & Nanoengineering/Springer Nature – Test of Time Award		
	Hall C		
09:15	DESIGNING FOR TRANSLATION OF SINGLE-CELL BIOLOGY TOOLS Amy E. Herr <i>University of California, Berkeley, USA</i>		
0 <mark>9:35</mark> -	09:50 Transition		
	Session 4A1 - Cell-on-a-Chip Pathogens Chair: Victor Ugaz, <i>Texas A&M University, USA</i>		
	Hall C		
09:50	KEYNOTE PRESENTATION ADVANCED MODELS FOR COMPREHENSIVE UNDERSTANDING OF VIRAL INFECTION Krzysztof Pyrć Jagiellonian University, POLAND		
10:20	SARS-COV-2 ELICITS A DIFFERENTIAL INNATE IMMUNE RESPONSE IN HIPSC-DERIVED AIRWAY-ON-CHIP AND ALVEOLI-ON-CHIP MODELS Sachin Yadav, Kazuya Fujimoto, Toru Takenaga, Yukiko Muramoto, Ryuta Mikawa, Koichi Igura, Senye Takahashi, Takeshi Noda, Shimpei Gotoh, and Ryuji Yokokawa Kyoto University, JAPAN		
10:40	ADIPOSE TISSUE MICROPHYSIOLOGICAL SYSTEM TO STUDY OBESTIY-ASSOCIATED PATHOPHYSIOLOGY Heejoeng Yoon, Jeong Kon Seo, and Tae-Eun Park Ulsan National Institute of Science and Technology (UNIST), KOREA		
11:00	ADRIAMYCIN-INDUCED GLOMERULOPATHY MODEL USING HIPSC-DERIVED PODOCYTES Darryl Koh ¹ , Ayumu Tabuchi ¹ , Kensuke Yabuuchi ^{2,3} , Yoshiki Sahara ² , Minoru Takasato ^{2,4} , Kazuya Fujimoto ¹ , and Ryuji Yokokawa ¹ ¹ Kyoto University, JAPAN, ² Institute of Physical and Chemical Research (RIKEN), JAPAN, ³ Osaka University, JAPAN, and ⁴ Kyoto University, JAPAN		
	Session 4B1 - Microvalves & Delivering Chair: Jeroen Lammertyn, <i>KU Leuven, BELGIUM</i>		
	Auditorium		
09:50	KEYNOTE PRESENTATION DIGITAL MANUFACTURING OF FUNCTIONAL, READY-TO-USE MICROFLUIDIC SYSTEMS David Juncker McGill University, CANADA		

THURSDAY PROGRAM

	Session 4B1 - Microvalves & Delivering (continued)
10:20	A SINGLE-MOLECULE VALVE ENABLED BY A FLEXIBLE NANOFLUIDIC DEVICE Nattapong Chantipmanee ¹ , Hiroto Kawagishi ² , Shun-ichi Funano ³ , Yo Tanaka ³ , and Yan Xu ^{1,2} ¹ Osaka Metropolitan University, JAPAN, ² Osaka Prefecture University, JAPAN, and ³ Institute of Physical and Chemical Research (RIKEN), JAPAN
1 <mark>0:40</mark>	INTEGRATED ON-CHIP GEL VALVES WITH HIGH EXPANSION RATE BY USING PARTIAL CONSTRAINT TO SUBSTRATES Kyoka Nakano ¹ , Yoshiyuki Yokoyama ² , and Takeshi Hayakawa ¹ ¹ Chuo University, JAPAN and ² Toyama Industrial Technology Research and Development Center, JAPAN
11:00	PROBING 3D TISSUE RHEOLOGY WITH A HIGH-THROUGHPUT MICROFLUIDIC ASPIRATION PIPETTE Sylvain Landiech ¹ , Pierre Lapèze ¹ , Marianne Elias ¹ , Morgan Delarue ¹ , Clément Roux ² , Fabien Mesnilgrente ¹ , David Bourier ¹ , and Pierre Joseph ¹ ¹ LAAS - CNRS, FRANCE and ² Université Toulouse III, FRANCE
	Session 4C1 - Space Exploration Chair: Nicolas Verplanck, CEA, FRANCE
	Ballroom B
09:50	KEYNOTE PRESENTATION TOWARDS UNIVERSAL ANALYTICAL PLATFORMS TO STUDY BIOLOGICAL SYSTEMS Lourdes Basabe University of the Basque Country, SPAIN
10:20	AN AUTOMATED AND MULTIPLEXING MICROFLUIDIC SYSTEM FOR IN-SITU BIOMARKER ANALYSIS FOR ASTRONAUT HEALTH MONITORING Zachary Estlack ¹ , Matin Golozar ² , Anna L. Butterworth ² , Richard A. Mathies ² , and Jungkyu Kim ¹ ¹ University of Utah, USA, and ² University of California, Berkeley, USA
10:40	MICROFLUIDIC PLATFORMS - NEW RESEARCH TOOLS FOR SPACE BIOLOGY APPLICATIONS
	Agnieszka Krakos (Podwin) ¹ , Patrycja Śniadek ¹ , Wojciech Kubicki ¹ , Dawid Przystupski ² , Mateusz Psurski ³ , Marta Jurga ⁴ , Julita Kulbacka ² , Rafał Walczak ¹ , and Jan Dziuban ¹ ¹ Wrocław University of Science and Technology, POLAND, ² Wrocław Medical University, POLAND, ³ Polish Academy of Sciences, POLAND, and ⁴ Wrocław University of Environmental and Life Sciences, POLAND
11:00	MICROFLUIDIC-BASED DIFFRACTED X-RAY TRACKING METHOD FOR PRECISE RECORDING OF ION CHANNEL MOTION IN RESPONSE TO SEQUENTIAL CHEMICAL SOLUTION CHANGES Yusuke Asagoe ¹ , Hirofumi Shimizu ² , and Yoshikazu Hirai ¹ ' <i>Kyoto University, JAPAN and</i> ² University of Fukui, JAPAN 11:50 Break and Exhibit Inspection

THURSDAY PROGRAM

	Awards Ceremony and Closing Remarks
	Hall C
11:50	 Award Ceremony CHEMINAS – Young Researcher Poster Awards Royal Society of Chemistry/Lab on a Chip – Widmer Poster Award Sensors (MDPI) – Outstanding Sensors and Actuators, Detection Technologies Poster Award IMT Masken und Teilungen AG – Microfluidics on Glass Poster Award NIST and Lab on a Chip – Art in Science Award Biomicrofluidics (AIP) – Best Paper Awards Elsevier Sensors and Actuators B. Chemical – Best Paper Award Microsystems & Nanoengineering/Springer Nature – Best Talk Award
12:30	Clo <mark>sing Remarks – MicroTAS 2023 Conference Chairs</mark> • Zbigniew Brzózka – <i>Warsaw University of Technology, POLAND</i> • Elżbieta Jastrzębska – <i>Warsaw University of Technology, POLAND</i>
12:45	Conference Adjourns

Microsystems & Nanoengineering

MicroSystems, MacroWorlds!

Submit your research today.

Editor-in-Chief

Professor Yirong Wu, Academician of Chinese Academy of Sciences, Aerospace Information Research Institute, Chinese Academy of Sciences

Executive Editors-in-Chief

Professor Tianhong Cui, Member of the European Academy of Arts and Sciences, University of Minnesota

Professor Ian White, Member of the Royal Academy of Engineering, Bath University

Topics of Particular Interest

Including, but not limited to:

- Micro-nano sensors and actuators
- MEMS and NEMS materials, fabrication and packaging
- Applied sciences of micro-nano systems
- Micro-nano mechanics, structures and modeling

Microsystems & Nanoengineering Editorial Office No. 19, North 4th Ring Road West, Haidian District, Beijing, 100190, China Tel: +86-10-58887222 Email: mine@aircas.ac.cn

www.nature.com/micronano

MONDAY 14:35 – 16:35 **TUESDAY** 15:10 – 17:10 **WEDNESDAY** 14:00 – 16:00

CLASSIFICATION

(last character of poster number)

- a Cells, Organisms and Organs on a Chip
- b Diagnostics, Drug Testing and Personalized Medicine
- c Fundamentals in Microfluidics and Nanofluidics
- d Integrated Microfluidic Platforms
- e Micro- and Nanoengineering
- f Sensors and Detection Technologies
- g Other Applications of Microfluidics
- h Late News

a - Cells, Organisms and Organs on a Chip

Bioinspired, Biomimetic and Biohybrid Devices

M001.a A 3D-PRINTED DEVICE FOR FOLDING STRING-SHAPED MUSCLE TISSUE TOWARD CULTURED MEAT PRODUCTION

Jung-Chun Sun¹, Byeongwook Jo¹, Yuya Morimoto^{1,2}, and Shoji Takeuchi¹

¹University of Tokyo, JAPAN and ²Waseda University, JAPAN

M002.a BIOINSPIRED INTESTINAL MODEL BASED ON DYNAMIC AND MULTI-SCALE CURVED SUBSTRATES

Valentin Chalut¹, Damien Le Roy², Delphine Delacour³, Anne-Laure Deman¹, and Caterina Tomba¹ ¹Université Claude Bernard Lyon 1, FRANCE, ²Institut Lumière Matière, FRANCE, and ³Institut de Biologie du Développement de Marseille, FRANCE

M003.a

HUMAN PLATELET MEMBRANE REACTOR FOR REMOVAL OF PATHOGENIC BIOFILMS ON NATURAL TEETH

Mamata Karmacharya^{1,2}, Sumit Kumar^{1,2}, and Yoon-Kyoung Cho^{1,2} ¹Ulsan National Institute of Science and Technology (UNIST), KOREA and ²Institute of Basic Science (CSLM-IBS), KOREA

M903.a A VESSEL ON CHIP MODEL TO STUDY THE ROLE OF SHEAR STRESS IN VASCULAR CONDITIONS

Swachhatoa Ghosh, Praphulla C. Shukla, and Soumen Das Indian institute of Technology, Kharagpur, INDIA

45

- TOO1.a A LIVING SKIN DISPLAY THAT TELLS YOU WILL BE SICK Jun Sawayama¹, Yuki Takayama^{1,3}, Shogo Nagata¹, Hoshimi Aoyagi¹, Aki Takimoto¹, Miki Takase², Miho Ogawa², Makoto Takeo², Koji Yano³, Shoji Takeuchi¹, Takashi Tsuji², and Hiroyuki Fujita^{3,4} ¹University of Tokyo, JAPAN, ²Institute of Physical and Chemical Research (RIKEN), JAPAN, ³Canon Medical Systems Co., JAPAN, and ⁴Tokyo City University, JAPAN
- TOO2.a CONSTRUCTION OF A SKIN-COVERED ROBOTIC FINGER WITH HYDROGEL SUBCUTANEOUS SUPPORT TOWARDS LONG-TERM OPERATION IN AIR

Keisuke Ohta¹, Minghao Nie¹, Haruka Oda¹, Yuya Morimoto^{1,2}, and Shoji Takeuchi¹ ¹*University of Tokyo, JAPAN and*²*Waseda University, JAPAN*

T003.a MICROFLUIDIC CONSTRUCTION OF ARTIFICIAL CELLS WITH MULTIPLE DNA CONDENSATES AS ORGANELLE MIMIC Ryotaro Yoneyama¹, Ryota Ushiyama¹, Tomoya Maruyama², Masahiro Takinoue², and Hiroaki Suzuki¹ ¹ Chuo University, JAPAN and ² Tokyo Institute of Technology, JAPAN

W002.a CORE-SHELL HYDROGEL FIBERS USING INTERFACIAL POLYELECTROLYTE COMPLEXATION FOR CELL CULTURE APPLICATIONS

Yoshinobu Utagawa¹, Kosuke Ino¹, Masahiro Takinoue², and Hitoshi Shiku¹

¹ Tohoku University, JAPAN and ² Tokyo Institute of Technology, JAPAN

W003.a REJUVENATING T CELLS TO BEAT CANCER USING ARTIFICIAL IMMUNE NICHES

Janet Huisman¹, Ansooya Bokil¹, Nadra Nilsen¹, Emma Haabeth¹, Naresh Veldurthi¹, Simon Sayer², Markus Lunzer², and Oyvind Halaas¹ ¹Norwegian University of Science and Technology, NORWAY and ²UpNano GmbH, AUSTRIA

Cell Capture, Counting, & Sorting

- M004.a A HIGH-THROUGHPUT AND MULTIFUNCTIONAL MICROFLUIDIC CHIP FOR RAPID ENRICHMENT OF CTMS AND CTC CLUSTERS Chan-Hua Yeh¹, Hsinyu Yang^{1,2}, Cian-Ling Wang¹, Hsien-Chih Peng¹, and Fan-Gang Tseng^{1,2} ¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN
- M005.a CROSSOVER CELL MIGRATION MEASUREMENTS (CCM): COMPREHENSIVE OPTICAL AND ELECTRICAL CELL TRACKING Karina Torres-Castro^{1,2}, Brian J. Nablo¹, and Darwin R. Reyes¹ ¹National Institute of Standards and Technology, USA and ²Theiss Research, USA
- M006.a ELECTROHYDRODYNAMICS: A VERSATILE TECHNIQUE FOR SINGLE CELL DIAGNOSIS AND ITS APPLICATIONS ON METAL NANOPARTICLE LOCATING Chib. Jia Li and Uping Yu Waga

Chih-Jie Li and Hsiang-Yu Wang National Tsing Hua University, TAIWAN

SNO

PRESENTATIONS

M007.a	HIGH THROUGHPUT X-Y SPERM SORTING BY ELECTRIC FIELD GRADIENT IN A REVERSE MICRO FLOW I-Jui Chen ¹ , Hsien-Chih Peng ¹ , Nian-Je Wu ¹ , Ren-Guei Wu ¹ , and Fan-Gang Tseng ^{1,2} ¹ National Tsing Hua University, TAIWAN and ² Academia Sinica, TAIWAN
M008.a	INTEGRATED SERS- DROPLET MICROFLUIDICS PLATFORM FOR SINGLE CELL SORTING Yuanshuai Zhu ¹ , William J. Peveler ¹ , Andrew Glidle ¹ , Zhugen Yang ² , and Huabing Yin ¹ ¹ University of Glasgow, UK, and ² Cranfield University, UK
M009.a	LOW-COMPLEX IMAGE-ACTIVATED CELL SORTING Neus Godino, Tobias Gerling, Felix Pfisterer, Nina Hupf, Simone De Carli, and Michael Kirschbaum Fraunhofer IZI-BB, GERMANY
M010.a	PH SORTING OF BACTERIA LADEN DROPLETS Giulia Venturini, Donald A. Morrison, and David T. Eddington University of Illinois, Chicago, USA
M011.a	SIMPLE A <mark>nd Robust Microfluidic Capture of T Cells and Analysis of CD Markers</mark>
	Yohan Choi, Woo-Joong Kim, Dongwoo Lee, Bum Joon Jung,
	Eui-Cheol Shin, and Wonhee Lee Korea Advanced Institute of Science and Technology (KAIST), KOREA
T004. a	AUTONOMOUS CELL MANIPULATION SYSTEM BASED ON DEEP REINFORCEMENT LEARNING
	Seiya Matsuda, Takaaki Abe, and Yoshiaki Ukita University of Yamanashi, JAPAN
T005 .a	DROPLET MICROFLUIDIC SYSTEMS FOR HIGH-THROUGHPUT Passive Selection and Enrichment of Bacteria Producing Biosurfactants
	Klaudia J. Staskiewicz ^{1,2} , Maria Dabrowska ² , Lukasz Kozon ^{1,2} , Lukasz Drewniak ² , and Tomasz S. Kaminski ²
	¹ Polish Academy of Sciences, POLAND and ² University of Warsaw, POLAND
T006. a	GELATIN METHACRYLATE AS A CELL-ENCAPSULATING HYDROGEL FOR IMAGE-BASED SINGLE-CELL SCREENING Takeru Fukunaga', Shunya Okamoto', Takayuki Shibata',
	Tuhin S. Santra ² , and Moeto Nagai ¹ ¹ Toyohashi University of Technology, JAPAN and ² Indian Institute of Technology, Madras, INDIA
T007.a	HIGHLY ACCURATE MULTIPLEX FLUORESCENCE-ACTIVATED
	DROPLET SORTING PLATFORM Wannes Verbist, Jolien Breukers, Sapna Sharma, Lotte Coelmont, Francesco Dal Dosso, Kai Dallmeier, and Jeroen Lammertyn <i>KU Leuven, BELGIUM</i>
T008.a	LARGE-SCALE CELL CAPTURE ARRAYS ON SUSPENDED SILICON NITRIDE MEMBRANES Jacek Lechowicz, Amir Tahmasebipour, Varoon Aluri, and Marc S. Chooljian <i>Mekonos Inc, USA</i>
	47

T009.a MICROFLUIDICS DEVICES AS A TOOL TO STUDY MECHANISM OF TRANSFORMATION BETWEEN STREPTOCOCCUS PNEUMONIAE CELLS

Anna Borowska, Donald A. Morrison, and David T. Eddington University of Illinois, Chicago, USA

T010.a RED BLOOD CELL DISTRIBUTION ON COMPLEX BIFURCATING NETWORKS

Jonatan Mac Intyre, Elizabath M. Nallukunnel Raju, Micaela Tavares Oliveira, Samin Nooranian, Irina Raykhel, Ilya Skovorodkin, Seppo Vainio, and Caglar Elbuken *University of Oulu, FINLAND*

T011.a SINGLE CELL ANALYSIS OF INERTIAL MIGRATION BY TUMOR CELLS AND CLUSTERS

Jian Zhou, Alexandra Vorobyeva, Qiyue Luan, and Ian Papautsky University of Illinois, Chicago, USA

W004.a CELL PATTERNING ON CYTOPHOBIC SUBSTRATES TROUGH COMBINED PHYSICOCHEMICAL AND BIOCHEMICAL FUNCTIONALIZATIONS

Enrique Azuaje-Hualde¹, Job Komen², Juncal Alonso-Cabrera¹, Albert van der Berg², Marian M. de Pancorbo¹, Andries van der Meer², Fernando Benito-Lopez¹, and Lourdes Basabe-Desmonts¹ ¹University of the Basque Country, SPAIN and ²University of Twente, NETHERLANDS

W005.a EFFECTS OF MICROFLUIDIC SORTING ON CANCER CELLS Esra Yilmaz, Zhimeng Fan, Jason P. Beech, Vinay Swaminathan, and Jonas O. Tegenfeldt Lund University, SWEDEN

W006.a GLASS-BOTTOM NANOWELLS FOR SINGLE CELL IMAGE CYTOMETRY Samuel Berryman, Deasung Jang, Pan Deng, Kerryn Matthews, and Hongshen Ma University of British Columbia, CANADA

W007.a INTEGRATED LABEL-FREE BLOOD FRACTIONATION AND LEUKOCYTE CONCENTRATOR IN PMMA SPIRAL MICROFLUIDIC DEVICES Kay Khine Maw^{1,2}, Sheng Yuan Leong¹, Wei Wang², and Han Wei Hou^{1,3} ¹Nanyang Technological University, SINGAPORE, ²Singapore Institute of Manufacturing Technology (SIMTech), SINGAPORE, and ³Nanyang Technological University, SINGAPORE

W008.a LEVERAGING THE ELASTIC DEFORMABILITY OF POLYDIMETHYLSILOXANE MICROFLUIDIC CHANNELS FOR EFFICIENT INTRACELLULAR DELIVERY Hashim Alhmoud, Mohammed Alkhaled, Batuhan E. Kaynak, and Selim Hanay Bilkent University, TURKEY

W009.a OPTOHYDRODYNAMIC TWEEZERS FOR SINGLE-CELL MANIPULATION AND ANALYSIS Shreyas K Vasantham¹, Yurii Promovych¹, Piotr Garstecki¹, Abhay Kotnala^{1,2}, and Ladislav Derzsi¹ ¹Polish Academy of Sciences, POLAND and²University of Houston, USA PRESENTATIONS

W010.a	SHEATH-AIDED INERTIAL SEPARATION OF BLOOD CELLS BY SIZE Tianlong Zhang ^{1,2} , Yaxiaer Yalikun ² , Yoichiroh Hosokawa ² , and Ming Li ¹ ¹ Macquarie University, AUSTRALIA and ² Nara Institute of Science and Technology, JAPAN
W011.a	SINGLE CELL DIFFERENTIATION ON A NOVEL ELECTRO MECHANO SENSING PLATFORM
	Ishita Bansal, Nishant Sharma, and Prosenjit Sen Indian Institute of Science, INDIA
	Cell-Culturing & Perfusion (2D & 3D)
M012.a	3D POROUS MICROFLUIDIC ARCHITECTURES FOR PERFUSABLE ENGINEERED HEART TISSUES Aniruddha Paul, Tomas V. Dorp, Anne Leferink, Anke R. Vollertsen, Andries V. D. Meer, and Mathieu Odijk University of Twente, NETHERLANDS
M013.a	AN INTEGRATED ELECTROTHERMAL PUMP FOR TAILORED PULSATILE VASCULAR CULTURE IN MICROPHYSIOLOGICAL SYSTEMS Kai Zhao, Itaru Kawata, Yoshiyasu Ichikawa, and Masahiro Motosuke Tokyo University of Science, JAPAN
M014.a	ELECTRODES ON POROUS MEMBRANES FOR DIELECTROPHORETIC ASSEMBLY AND IMPEDIMETRIC MEASUREMENT OF MODEL BARRIER TISSUES ON CHIP Alexander P.M. Guttenplan and Darwin R. Reyes National Institute of Standards and Technology, USA
M015.a	HYDROSTATIC PRESSURE AS A BIOMECHANICAL STIMULI ON HUVECS IN A 96-WELL-PLATE David T. Eddington University of Illinois, Chicago, USA
M016.a	MICROFLUIDIC HARVESTING OF SINGLE BREAST CANCER CELL-DERIVED SPHEROIDS FOR HIGH-THROUGHPUT CANCER STEM CELL-TARGETING DRUG SCREENING Wenxiu Li City University of Hong Kong, HONG KONG
	and the second
M017.a	OXYGEN CONSUMPTION RATE (OCR) CHARACTERIZATION OF SINGLE SPHEROIDS USING A MICROFLUIDIC PLATFORM AND FLUORESCENCE LIFETIME IMAGING MICROSCOPY Santhosh Kannan ^{1,2} , Chien-Chung Peng ¹ , and Yi-Chung Tung ¹
	¹ Academia Sinica, TAIWAN and ² National Tsing Hua University, TAIWAN
M018.a	THREE-DIMENSIONAL IN VITRO GUT-IMMUNE MODEL TO MIMIC PEYER'S PATCHES BASED ON BIOPRINTING Jongho Park, Gihyun Lee, and Je-Kyun Park Korea Advanced Institute of Science and Technology (KAIST), KOREA
T012.a	A NEW LAB-ON-A-CHIP SYSTEM FOR MODELING VASCULARIZED OVARIAN CANCER TISSUE Paulina Musolf, Magdalena Flont, Joanna Konopka, Agnieszka Żuchowska, and Elżbieta Jastrzębska Warsaw University of Technology, POLAND

T013.a BATCH BAYESIAN OPTIMIZATION FOR IN VITRO SKELETAL MUSCLE TISSUE MATURATION WITH MULTIPLE STIMULATION PARAMETERS Daiki Miyata¹, Keitaro Kasahara¹, Yuta Tokuoka¹, Yujin Taguchi¹, Takahiro Yamada¹, Akira Funahashi¹, Yuta Kurashina², and Hiroaki Onoe1 ¹Keio University, JAPAN and ²Tokyo University of Agriculture and Technology, JAPAN **EVALUATION OF POLYMETHYLPENTENE, AN OXYGEN PERMEABLE** T014.a THERMOPLASTIC. FOR LONG-TERM ON-A-CHIP CELL CULTIVATION Linda Sønstevold¹, Maciej Czerkies², Enrique Escobedo-Cousin¹, Slawomir Blonski², and Elizaveta Vereshchagina¹ ¹SINTEF Digital, NORWAY and ²Institute of Fundamental Technological Research, POLAND T015.a HYPOXIA ON A CHIP: ASSESSING THE CLINICAL HALLMARKS OF HYPOXIA ON NATURALLY HYPOXIC SPHEROIDS Elena Refet-Mollof^{1,2,3}, Rodin Chermat^{1,2,3}, Philip Wong^{2,3,4,5}, and Thomas Gervais^{1,2,3} ¹Polytechnique Montréal, CANADA, ²Centre de recherche du Centre Hospitalier de l'Université de Montréal, CANADA, 3 Institut du Cancer de Montréal, CANADA, ⁴Centre Hospitalier de l'Université de Montréal, CANADA, and ⁵Princess Margaret Cancer Centre, CANADA T016.a MICROFLUIDIC SYSTEM FOR MODELING THE VASCULARIZATION OF THE PANCREATIC ISLET MODEL Patrycja Sokołowska, Magdalena Kopińska, Elżbieta Jastrzebska, and Zbigniew Brzózka Warsaw University of Technology, POLAND T017.a POROUS MICROCHAMBER-INTEGRATED MICROPERFUSION SYSTEM FOR FORMATION, MORPHOLOGY CONTROL, AND OBSERVATION OF MULTICELLULAR AGGREGATES Yusuke Araki, Mai Takagi, Rie Utoh, and Masumi Yamada Chiba University, JAPAN **TOWARDS 3D CELL CULTURES ON-CHIP – TECHNOLOGICAL STUDIES** T018.a **OF NOVEL HYDROGEL MATRICES** Adrianna Cieślak¹, Agnieszka Krakos (Podwin)¹, Magdalena Łabowska¹, Julita Kulbacka^{2,3}, and Jerzy Detyna¹ ¹Wrocław University of Science and Technology, POLAND, ²Wrocław Medical University, POLAND, and ³State Research Institute Centre for Innovative Medicine, LITHUANIA W012.a AN EFFECTIVE METHOD TO PROMOTE THE MATURATION OF HUMAN

IPSC CARDIOMYOCYTES USING A THIN POLYMER FILM Yu-Hsiang Hsu¹, Hong-Wen Wang¹, Chia-Wei Liu¹, Ching-Ying Huang², Darien Z.H. Chan², and Patrick C.H. Hsieh^{1,2} ¹National Taiwan University, TAIWAN and ²Academia Sinica, TAIWAN

W013.a DEVELOPING RAPID SCAFFOLD-FREE CELL SHEET BIOFABRICATION TECHNIQUE AND ITS APPLICATION AS BUILDING BLOCKS OF COMPLEX 3D TISSUE CONSTRUCTS Maedeh Khodamoradi and Ponnambalam R. Selvaganapathy McMaster University, CANADA

PRESENTATIONS

W014.a	FABRICATION OF ROPE-LIKE AXON BUNDLE BY APPLYING DIAMOND-LIKE CARBON THIN FILM DEPOSITION Tetsuo Endo and Masahito Ban Nippon Institute of Technology, JAPAN
W015.a	MICROENGINEERING PAPER PLATFORM WITH MICROFLUIDIC DELIVERY FOR SPHEROIDS CRYOPRESERVATION AND DRUG TESTING Ayoub Glia ¹ , Safeeya Alawadhi ¹ , Muhammedin Deliorman ¹ , Pavithra Sukumar ¹ , and Mohammad A. Qasaimeh ^{1,2} ¹ New York University, Abu Dhabi, UAE and ² New York University, USA
W016.a	MYOBLAST CELL CULTURE ON EDIBLE BLOOD PLASMA-ALGINATE HYDROGEL MICROFIBERS FOR CULTURED MEAT APPLICATION Kensei Okada, Byeongwook Jo, Minghao Nie, and Shoji Takeuchi University of Tokyo, JAPAN
W017.a	THE STUDY OF PRIMARY CELLS DIFFERENTIATION INTO CANCER-ASSOCIATED FIBROBLASTS (CAF) UNDER MICROFLUIDIC CONDITIONS Magdalena Flont, Patrycja Sokolowska, and Elżbieta Jastrzębska Warsaw University of Technology, POLAND
W018.a	UNLEASHING THE POTENTIAL OF CONTINUOUS UNIDIRECTIONAL PERFUSION: AN AUTOMATED SMART LID SYSTEM FOR LONG-TERM CULTURE OF BIOENGINEERED TISSUES Sarah Heub ¹ , Stéphanie Boder-Pascher ¹ , Manon Garzuel ¹ , Charlotte Fonta ¹ , Ary Marsee ² , Hüseyin B. Atakan ¹ , Jonas Goldowsky ¹ , Réal Ischer ¹ , Diane Ledroit ¹ , Thomas M. Valentin ¹ , Kerstin Schneeberger ² , and Bart Spee ² ¹ CSEM SA, SWITZERLAND and ² Utrecht University, NETHERLANDS
	Inter-& Intracellular Signaling, Cell Migration
M019.a M020.a	A BILAYERED TUMOR-VASCULAR MODEL IN DIGITAL MICROFLUIDIC CHIP FOR TUMOR CELL INTRAVASATION STUDY Wenting Qiu ^{1,2} , Wanqing Wu ¹ , Jinqing Huang ² , and Mengsu Yang ¹ ¹ City University of Hong Kong, HONG KONG and ² Hong Kong University of Science and Technology, HONG KONG MIMICKING T CELL ACTIVATION AND MIGRATION IN RESPONSE TO CHEMOKINE GRADIENT IN A MICROSYSTEM
	Parvaneh Sardarabadi ¹ , Kang-Yun Lee ² , Wei-Iun Sun ² , and Cheng-Hsien Liu ¹ ¹ National Tsing Hua University, TAIWAN and ² Taipei Medical University, TAIWAN
T019.a	DEVELOPMENT OF A THREE-DIMENSIONAL MICROFLUIDIC PLATFORM FOR CELL MIGRATION STUDIES Tak Keung Pang, Yu Zhu, Eileen Yi Lam Li, Anna M. Blocki, Yi Ping Ho, and Wood Yee Chan, Chinese University of Hong Kong, HONG KONG

W019.a	MICROWELL CHIPS REVISITED: APPLYING MICROWELLS TO STUDY CELL-CELL JUNCTION IN CALCIUM SIGNALING Hanyu Yao and Hon Son Ooi Chinese University of Hong Kong, HONG KONG
	Liposomes/Membranes
M021.a	EVALUATION OF MEMBRANE PROTEINS SYNTHESIZED USING THE IN SITU IVTT SYSTEM FOR INSERTION INTO MONODISPERSE GUVS Satoshi Nanjo ¹ , Mamiko Tsugane ¹ , Tomoaki Matsuura ² , and Hiroaki Suzuki ¹ ¹ Chuo University, JAPAN and ² Tokyo Institute of Technology, JAPAN
M022.a	GIGA-OHM SEALED BLOCK COPOLYMER-BASED 3D POLYMORPHIC ARTIFICIAL CELL MEMBRANE ARRAY FOR ELECTROPHYSIOLOGICAL RECORDING Dong-Hyun Kang ¹ , Bong Kyu Kim ^{1,2} , Hyunil Ryu ¹ , and Tae Song Kim ¹ ¹ Korea Institute of Science and Technology, KOREA and ² Korea University, KOREA
M023.a	STABILIZING ARTIFICIAL CELLS WITH HYDROGEL CYTOSKELETON Conghui Ma ShanghaiTech University, CHINA
T020.a	A CENTRIFUGAL DROPLET FORMATION UNIT FOR SINGLE-STEP GENERATION OF GIANT LIPOSOMES IN A CDICE DEVICE Sho Takamori ¹ , Hisatoshi Mimura ¹ , Toshihisa Osaki ¹ , and Shoji Takeuchi ^{1,2} ¹ Kanagawa Institute of Industrial Science and Technology, JAPAN and ² University of Tokyo, JAPAN
T021.a	FORMING ASYMMETRIC LIPOSOMES WITH NATURALLY-DERIVED LIPIDS TO MIMIC RED BLOOD CELLS Alex R. McDonald, Paige Allard, Kaitlyn E.E. Ramsay, and Katherine S. Elvira University of Victoria, CANADA
T022.a	ION FLUX RECORDING OF SINGLE PROTEINS IN 3D FREE-STANDING LIPID BILAYER ARRAY FORMED BY PRESSURE-ASSISTED ELECTROFORMATION IN PHYSIOLOGICAL SALT CONCENTRATION Bong Kyu Kim ^{1,2} , Dong-Hyun Kang ¹ , Hyunil Ryu ¹ , Seok Chung ² , and Tae Song Kim ¹ ¹ Korea Institute of Science and Technology, KOREA and ² Korea University, KOREA
W020.a	ANALYZING THE ROLE OF PROTEIN ON TEAR FILM LIPID LAYER IN EVAPORATION RESISTANCE USING A 3D-PRINTED CHAMBER Ahmed Fuwad, Deeborah Lee, Sun Min Kim, and Tae-Joon Jeon INHA University, KOREA
W021.a	INVESTIGATION AND CHARACTERIZATION OF SINGLE NANOSIZED LIPOSOMES IN A NANOFLUIDIC DEVICE Soji Miyata ¹ , Nattapong Chantipmanee ¹ , and Yan Xu ^{1,2} ¹ Osaka Metropolitan University, JAPAN and ² Japan Science and Technology Agency (JST), JAPAN

W022.a	MICROFLUIDIC FORMATION OF MULTICAVITY LIPID PARTICLE (MCLP) FROM DOUBLE EMULSION TEMPLATE Mostafa Bakouei, Indraja S. Raju, Ali Kalantarifard, and Caglar Elbuken University of Oulu, FINLAND
Org	anisms on Chip (C. elegans, Zebrafish, Arabidopsis, etc.)
M024.a	BIOENERGETIC HEALTH ASSESSMENT OF CORAL POLYPS VIA REAL-TIME MONITORING OF OXYGEN CONSUMPTION RATES IN A MICROFLUIDIC DEVICE Hsin-ying Wu, Pei-Heng Tai, and Shih-Hao Huang National Taiwan Ocean University, TAIWAN
M025.a	LOW-COST OPTOFLUIDIC DEVICE FOR RAPID AND CONTINUOUS LIGHT SHEET SCREENING OF NEURODEGENERATION IN LARVAL AND ADULT C. ELEGANS Faraz Rahimpouresfahani, Nima Tabatabaei, and Pouya Rezai York University, CANADA
T023.a	A MICROFLUIDC PLATFOM FOR IN SITU ANALYSIS OF BIOFILM FORMATION IN FLOW AND TURBULENCE MEASUREMENT Keqing Wen ^{1,2} , Anna A. Gorbushina ^{1,2} , Karin Schwibbert ¹ , and Jérémy Bell ¹ ¹ Bundesanstalt für Materialforschung und -prüfung (BAM), GERMANY and ² Freie Universität Berlin, GERMANY
T024.a	DEVELOPING MICROFLUIDIC PLATFORMS FOR RAPID IDENTIFICATION OF NEW TARGETS FOR NEURODEGENERATIVE DISORDERS Paloma P. Torres, Richard Kaye, lan Johnston, Maria Dimitriadi, and Christabel Tan University of Hertfordshire, UK
T025.a	SONOROTOR: AN ACOUSTIC ROTATIONAL ROBOTIC PLATFORM FOR ZEBRAFISH LARVAE Zhiyuan Zhang and Daniel Ahmed <i>ETH Zürich, SWITZERLAND</i>
W023.a	ACOUSTOFLUIDIC IMMOBILISATION OF C. ELEGANS FOR NEURODEGENERATIVE DISEASE RESEARCH Nino F. Läubli and Gabriele S. Kaminski Schierle University of Cambridge, UK
W024.a	ELECTRICAL-IMPEDANCE-SPECTROSCOPY-BASED DETECTION OF MORPHOLOGY AND VIABILITY OF IMMOBILIZED C. ELEGANS WORMS IN A MICROFLUIDIC DEVICE Song Yu ¹ , Tiancong Lan ¹ , Jiaqi Liu ¹ , Shuangye Xu ¹ , Xinxin Lu ¹ , Yiyan Zhang ² , Di Chen ³ , Zixin Wang ⁴ , and Zhen Zhu ¹ ¹ Southeast University, CHINA, ² Nanjing University, CHINA, ³ Zhejiang University, CHINA, and ⁴ Sun Yat-sen University, CHINA

	Organs on Chip
M026.a	A COMPARTMENTALISED MICROFLUIDIC DEVICE ENABLES AIR-LIQUID INTERFACE CULTURE OF AIRWAY EPITHELIAL CELLS AND MEASUREMENT OF DYNAMIC IMMUNE CELL RECRUITMENT Lucy-May Young, Louis J.Y. Ong, Kirsten Spann, and Yi-Chin Toh Queensland University of Technology, AUSTRALIA
<mark>M027.</mark> a	A MULTIORGAN-ON-CHIP PLATFORM TO STUDY CANCER METASTASIS AND ASSOCIATED VASCULAR HOMEOSTATIC DYNAMICS Nilesh Kumar, Prosenjit Sen, and Ramray Bhat Indian Institute of Science, INDIA
M028.a	A THERMOPLASTIC ELASTOMER BASED MICROFLUIDIC DEVICE FOR BLOOD VESSEL NETWORK FORMATION AND APPLICATIONS Byeong-Ui Moon ¹ , Kebin Li ¹ , Han Shao ² , Lauren Banh ² , Lidija Malic ¹ , Edmond Young ² , Sowmya Viswanathan ^{2,3} , and Teodor Veres ¹ ¹ National Research Council Canada, CANADA, ² University of Toronto, CANADA, and ² University Health Network, CANADA
M029.a	BLADDER-ON-A-CHIP RECAPITULATING THE STRATIFIED UROTHELIUM BY CO-CULTURING WITH FIBROBLASTS Taiki Nishimura ¹ , Yuji Takata ¹ , Kazuhiro Ofuji ² , Kazuya Fujimoto ¹ , Minoru Takasato ² , and Ryuji Yokokawa ¹ ¹ Kyoto University, JAPAN and ² Institute of Physical and Chemical Research (RIKEN), JAPAN
M030.a	DESMOPLASIA IN STROMAL CELLS AND ANTI-CANCER DRUG RESISTANCE: ONE CHIP MICRO ENGINEERED TUMOR MODEL Madhu Shree Podda ¹ , Yu-De Chu ² , Chau-Ting Yeh ² , and Cheng-Hsien Liu ¹ ¹ National Tsing Hua University, TAIWAN and ² Chang Gung Memorial Hospital, TAIWAN
M031.a	DEVELOPMENT OF MICROPHYSIOLOGICAL MODEL FOR HYPOXIA-INDUCED PLACENTAL REMODELING Ahmed Fuwad, Seorin Jeong, Tae-Joon Jeon, and Sun Min Kim INHA University, KOREA
M032.a	EVALUATION OF THE THREE-DIMENSIONAL SHAPE OF THE CELL SPHEROIDS FORMED BY USING VIBRATION-INDUCED FLOW Yui Katsumata and Takeshi Hayakawa <i>Chuo University, JAPAN</i>
M033.a	INJECTION MOLDED LUNG-ON-CHIP MODEL INTEGRATING APOTEIN-BASED CELL CULTURE MEMBRANE TO STUDY ALVEOLAR ECM REMODELING Tobias A. Weber ¹ , Jan Schulte ¹ , Pauline Zamprogno ¹ , Johannes Fehr ¹ , and Olivier T. Guenat ^{1,2} ¹ University of Bern, SWITZERLAND and ² University Hospital of Bern, SWITZERLAND

TAS 023

PRESENTATIONS

POSTER PRESENTATIONS

M034.a	MICROFLUIDIC PLATFORM FOR MODELLING OF ALVEOLAR- VASCULAR CELL INTERACTIONS IN PULMONARY HYPERTENSION (PH) ASSOCIATED WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) Maike Haensel, Vanessa Ho, Joshua Edel, Darryl Overby, Clare Lloyd, and Beata Wojciak-Stothard Imperial College London, UK
M035.a	ON-CHIP MODEL OF TUMOR ANGIOGENESIS IN TRANSLOCATION RENAL CELL CARCINOMA INCORPORATING PERICYTES AND ENDOTHELIAL CELLS Atsuya Kitada', Hang Zhou', Kazuya Fujimoto', Miwa Tanaka², Masaya Baba³, Takuro Nakamura⁴, and Ryuji Yokokawa' 'Kyoto University, JAPAN, ² Japanese Foundation for Cancer Research, JAPAN, ³ Kumamoto University, JAPAN, and ⁴ Tokyo Medical University, JAPAN
M036.a	QUANTIFYING THE REGENERATION OF RADIATION-DAMAGED VESSELS ON A 3D VASCULATURE CHIP USING DEEP LEARNING-BASED IMAGE ANALYSIS Dong-Hee Choi ^{1,2} , Jinchul Ahn ^{1,2} , Yong Hun Jung ^{1,2} , Euijeong Song ² , and Seok Chung ^{1,3} ¹ Korea University, KOREA, ² Next&Bio Inc, KOREA, and ³ Korea Institute of Science and Technology (KIST), KOREA
M037.a	TIME COURSE ANALYSIS AND NUMERICAL SIMULATION OF ON-CHIP-VASCULAR BED FORMATION TOWARD QUANTITATIVE UNDERSTANDING Kazuya Fujimoto, Yoshikazu Kameda, and Ryuji Yokokawa Kyoto University, JAPAN
T026.a	A GLOMERULUS-ON-A-CHIP PLATFORM FOR STUDYING HYPERTENSION-BORN PROTEINURIC RENAL DISEASE Zong-Min Liu, Bo-Yi Yao, Yun-Jie Hao, and Fan-Gang Tseng National Tsing Hua University, TAIWAN
T027.a	A MULTIWELL MICROFLUIDIC-MEA PLATFORM FOR NEUROMUSCULAR JUNCTION RECONSTRUCTION Oramany Phouphetlinthong, Audrey Moisan, Audrey Sebban, Pauline Duc, Florence Rage, and Benoit Charlot Université de Montpellier, FRANCE
T028.a	ADVANCING CANCER COMPREHESION: UNVEILING PROMISING OPTIONS WITH MULTI-ORGAN-ON-CHIP (MULTI-OOC) APPORACH Paweł Romańczuk, Agnieszka Żuchowska, Elżbieta Jastrzębska, Magdalena Matczuk, Joanna Zajda, and Zbigniew Brzózka Warsaw University of Technology, POLAND
T029. a	CANTILEVER MICRO ELECTRODE ARRAY (MEA) FOR THE MEASUREMENT OF INNER EXTRACELLULAR ACTIVITY OF CEREBRAL ORGANOïDS Oramany Phouphetlinthong, Emma Partiot, Audrey Sebban, Raphaël Gaudin, and Benoît Charlot Université de Montpellier, FRANCE

T030.a DEVELOPING MICROFLUIDIC DEVICES FOR CELLULAR MODELLING OF INHERITED KIDNEY DISORDERS

George Parpas, Colin Johnson, and Christoph Walti University of Leeds, UK

T032.a FIBROBLASTS INDUCE DRUG RESISTANCE IN LUNG CANCER ORGANOIDS

Qiyue Luan, Ines Pulido, Jian Zhou, Takeshi Shimamura, and Ian Papautsky *University of Illinois, Chicago, USA*

T033.a LARGE-SCALE MANUFACTURING OF FOIL-BASED MICROFLUIDIC CHIPS FOR NEURON CELL CULTURE AND AXON OUTGROWTH MONITORING

Nihan Atak¹, Anja Haase¹, Ana Ayerdi-Izquierdo², Martin Smolka¹, Jan Hesse¹, Nerea briz Iceta², Lea Tomasova³, Clarissa Salado⁴, Stephan Ruttloff¹, Johannes Götz¹, Alvaro Conde⁵, Conor O'Sullivan⁶, and Nastasia Okulova⁶

¹Joanneum Research Forschungsgesellschaft mbH, AUSTRIA, ²TECNALIA, Basque Research and Technology Alliance (BRTA), SPAIN, ³Ibidi GmbH, GERMANY, ⁴Innoprot, SPAIN, ⁵Micronit BV, NETHERLANDS, and ⁶Inmold, DENMARK

T034.a MONOLITHIC CO-CULTURE SYSTEM FOR THE GUT-LIVER INTERACTION STUDY INTEGRATING PARACELLULAR BARRIER FUNCTION ASSAY

Ryuya Kida¹, Alan Rajendran², Mamiko Tsugane¹, Jean-Charles Duclos-Vallee², Maxime M. Mahe³, Sakina Bensalem², Hiroaki Suzuki¹, and Bruno L. Pioufle² ¹*Chuo University, JAPAN,* ²*Universite Paris Saclay, FRANCE, and* ³*Nantes Universite, FRANCE*

T035.a OPTIMIZATION OF CULTURE CONDITIONS FOR PROMOTING ANGIOGENESIS AROUND AND WITHIN A LIVER SPHEROID IN A MICROFLUIDIC DEVICE

Satomi Matsumoto¹, Wenlong Wang¹, Ayumi Haginiwa¹, Anna K. Kopec², Julie Harney², Lindsay Tomlinson², Nasir Khan², Kazuya Fujimoto¹, and Ryuji Yokokawa¹ ¹*Kyoto University, JAPAN and*²*Pfizer, Inc., USA*

T036.a SPIDER SILK MEMBRANE-BASED TISSUE MODELS IN OPEN-TOP MICROFLUIDIC CHIPS ALLOW INTERMEDIATE SHEAR LEVELS Linneea Gustafsson^{1,3}, Nayere Tabina², Volker Lauschke²,

My Hedhammar³, and Wouter van der Wijngaart³ ¹Spiber Technologies AB, SWEDEN, ²Karolinska Institutet, SWEDEN, and ³KTH Royal Institute of Technology, SWEDEN

T037.a UNIBODY 3D PRINTING OF MICROFLUIDIC DEVICES FOR CELL CULTURE APPLICATIONS

Louis Jun Ye Ong, Lucy M-G. Young, and Yi-Chin Toh Queensland University of Technology, AUSTRALIA

W025.a	A 3D PRINTED PATIENT-SPECIFIC CAROTID VESSEL WITH PHYSIOLOGICAL HEMODYNAMICS AND TISSUE ARCHITECTURE
	Jorge A. Catano ¹ , Louis J. Y. Ong ¹ , Prasad KDV. Yarlagadda ^{1,2} , Zhiyong Li ¹ , and Yi-Chin Toh ¹
	¹ Queensland University of Technology, AUSTRALIA and ² University of Southern Queensland, AUSTRALIA
W026.a	A MICROFLUIDIC ONE-SINGLE-TOUCH PLATFORM FOR HIGH-THROUGHPUT GENERATION OF VASCULARIZED TUMOR MODELS
	Shou-Yu Ma ^{1,2} , Didem Rodoplu Solovchuk ¹ ,
	Gou-Jen Wang ² , and Chia-Hsien Hsu ^{1,2}
	¹ National Health Research Institutes, TAIWAN and
	² National Chung Hsing University, TAIWAN
W028.a	ASSESSING COMBINATION IMMUNOTHERAPY THROUGH A TUMOUR-MICROENVIRONMENT-ON-CHIP PLATFORM
	Hsuan-Yu Mu, Chiao-Min Lin, Li-An Chu, Ji Li, Chao-Yu Liu, Hsi-Chien Huang, Sheng-Liang Cheng, Tsung-Ying Lee,
	Hsin Mei Lee, Hsin-Min Chen, Yun-Jen Tsai,
	Yunching Chen, and Jen-Huang Huang
	Tsing Hua University, TAIWAN
W029.a	DESIGN AUTOMATION FOR ORGANS-ON-CHIP
mozoia	Maria Emmerich ¹ , Philipp Ebner ² , and Robert Wille ^{1,3}
	¹ Technical University of Munich, GERMANY,
	² Johannes Kepler University Linz, AUSTRIA, and
	³ Software Competence Center Hagenberg GmbH, AUSTRIA
W030.a	DEVELOPMENT OF A MICROFLUIDIC MODEL OF CEREBRAL Microbleeds at the blood-brain interface
	Sae R. Choi ¹ , Natalia Ospina-Munuz ¹ , Nishanth Surianarayanan ¹ ,
	Sehong Kang ² , Michelle Luo ³ , Yun Chang ¹ , Xiaoping Bao ¹ ,
	Alisa S. Wolberg ³ , Martha U. Gellette ² , Hyunjoon Kong ² , and Bumsoo Han ¹
	¹ Purdue University, USA, ² University of Illinois, Urbana-Champaign, USA, and ³ University of North Carolina, USA
W031.a	EVALUATION AND COMPARISON OF ANGIOGENIC SPROUTS ACCORDING TO THE ORIGINS OF ENDOTHELIAL CELLS IN AN ON-CHIP ALVEOLAR SOFT PART SARCOMA (ASPS) ANGIOGENESIS MODEL
	Ayumi Haginiwa ¹ , Surachada Chuaychob ¹ , Satomi Matsumoto ¹ , Miwa Tanaka ² , Kazuya Fujimoto ¹ , Takuro Nakamura ³ , and Ryuji Yokokawa ¹
	¹ Kyoto University, JAPAN, ² Japanese Foundation for Cancer Research, JAPAN, and ³ Tokyo Medical University, JAPAN
W032.a	GROWING SPHEROIDS IN A CONTINUOUSLY PERFUSABLE HYBRID
	Hiba Aljayyousi ¹ , Amani Ghassan ¹ , Sarah Sahloul ¹ , Navajit Baban ¹ , Ajymurat Orozaliev ¹ , Piergiorgio Percipalle ¹ , and Yong-Ak Song ^{1,2} ¹ New York University, Abu Dhabi, UAE and ² New York University, USA

W033.a	MEDIUM FLOW CONTROLLED-CYCLIC BREATHING LUNG INFLAMMATION CHIP FOR PULMONARY DRUG SCREENING Chao-Yu Liu, Ying-Ru Chen, Hsuan-Yu Mu, and Jen-Huang Huang National Tsing Hua University, TAIWAN
W034.a	NOVEL THIOL-ENE-BASED MICROFLUIDIC DEVICE INTEGRATED WITH INKJET-PRINTED MULTI-SENSING CAPABILITIES FOR ORGAN-ON-A-CHIP APPLICATIONS Denise Marrero ^{1,2} , Ferran Pujol-Vila ¹ , Gemma Gabriel ^{1,2} , Rosa Villa ^{1,2} , Mar Alvarez ^{1,2} , and Xavi Illa ^{1,2} ¹ Consejo Superior de Investigaciones Científicas (CSIC), SPAIN and ² Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), SPAIN
W035.a	PERIODONTIUM-ON-CHIP: A NOVEL VASCULARIZED HUMAN DENTAL MODEL TO STUDY PERIODONTITIS Sara Svanberg ¹ , Elisabeth Hirth ¹ , Thimios A. Mitsiadis ² , and Petra S. Dittrich ¹ ¹ ETH Zürich, SWITZERLAND and ² University of Zurich, SWITZERLAND

W036.a THE ONSET OF CELLULAR DYSFUNCTION IN A 3D GLYCATED EXTRACELLULAR MATRIX

Insung Yong¹, Eun Sun Ji², Hyejin Kim¹, Yoonmi Hong¹, Jin Young Kim², and Pilnam Kim¹

¹Korea Advanced Institute of Science and Technology (KAIST), KOREA and ²Korea Basic Science Institute (KBSI), KOREA

Single-Cell Analysis

M038.a A MICROFLUIDIC PLATFORM TO STUDY BACTERIAL MOTILITY UNDER CONFINEMENT

Md Ramiz Raza, Jijo E. George, Savita Kumari, Mithun K. Mitra, and Debjani Paul Indian Institute of Technology, Bombay, INDIA

M039.a CONSTRUCTION OF A CELL SIZE AND HARDNESS MEASUREMENT METHOD USING A MICROFLUIDIC DEVICE WITH A MULTI-LAYERED STRUCTURE

Mitsuhiro Horade¹, Masatsugu Moriga¹, Shuichi Murakami², and Tsunemasa Saiki³

¹National Defense Academy of Japan, JAPAN, ²Osaka Research Institute of Industrial Science and Technology, JAPAN, and ³Hyogo Prefectural Institute of Technology, JAPAN

M040.a DEVELOPMENT OF A MICROFLUIDIC DEVICE FOR MEASUREMENT OF DEFORMABILITY AND PLURIPOTENCY FROM THE SAME CELL Takuma Nomiyama, Sachiko Ide, and Noritada Kaji Kyushu University, JAPAN

M041.a HIGH-THROUGHPUT REAL-TIME CHARACTERISATION OF THE INTRINSIC MEMBRANE MECHANICAL PROPERTIES OF LIVING CELLS Ziyu Guo and Yi Sui

Queen Mary University of London, UK

M042.a IN-SITU LABEL-FREE QUANTITATIVE PHASE IMAGING FLOW CYTOMETRY FOR BACTERIA EXTRACELLULAR POLYMERIC SUBSTANCES CHARACTERIZATION IN SEWAGE TREATMENT Fei Liang, Shunan Zhao, Junwen Zhu, Yifan Sun, Ruiping Liu,

and Wenhui Wang Tsinghua University, CHINA

M043.a MASSIVELY PARALLEL HIGH THROUGHPUT SINGLE-CELL PRINTING AND HIGHLY EFFICIENT LARGE BIOMOLECULAR DELIVERY INTO CELLS

Ashwini S. Shinde¹, Pallavi S. Shinde¹, Kavitha Illath¹, Moeto Nagai², Srabani Kar³, and Tuhin S. Santra¹

¹Indian Institute of Technology, Madras, INDIA, ²Toyohashi University of Technology, JAPAN, and ³Indian Institute of Science Education and Research, INDIA

M044.a ON THE COMPATIBILITY OF NANOVIALS WITH MICROFLUIDIC IMPEDANCE CYTOMETRY

Federico Petitta¹, Cristian Brandi¹, Adele De Ninno², Paolo Bisegna¹, and Federica Caselli¹

¹University of Rome Tor Vergata, ITALY and ²Italian National Research Council, ITALY

M045.a PERFORMANCE-ENHANCED CLOGGING-FREE VISCOUS SHEATH CONSTRICTION IMPEDANCE FLOW CYTOMETRY

Junwen Zhu, Yongxiang Feng, Huichao Chai, Fei Liang, Zhen Cheng, and Wenhui Wang *Tsinghua University, CHINA*

M046.a STUDYING SINGLE PROTOPLASTS - A FLUIDOT CASE STUDY ON SINGLE PLANT CELLS

Karen Ven¹, David De Vleesschauwer², Jolien Breukers¹, Robin De Groote¹, Aurélie Mohrbacher¹, Ilse Van Den Brande², Sarah De Cokere², Francesco Dal Dosso¹, Peter Denolf², and Jeroen Lammertyn¹ ¹*KU Leuven, BELGIUM and* ²*BASF Seeds & Traits, BELGIUM*

M047.a UNCOVERING STRAIN-DEPENDENT MECHANICAL BIOMARKERS WITH SEQUENTIAL-SQUEEZE NODE-PORE SENSING Rachel Rex, Sharicka Zutshi, and Lydia Sohn University of California, Berkeley, USA

T038.a APOPTOSIS MONITORING OF CHINESE HAMSTER OVARY CELLS USING MICROFLUIDIC ISODIELECTROPHORESIS John-Alexander Preuss¹, Roberto Rodriguez-Moncayo², Joel Voldman², and Janina Bahnemann¹

¹University of Augsburg, GERMANY and ²Massachusetts Institute of Technology, USA

T039.a DEFORMABILITY CYTOMETRY REVEALS INCREASED CELL STIFFNESS IN PATIENTS WITH MAJOR DEPRESSIVE DISORDER Lisa Kwapich¹, Alexander Karabatsiakis², Tobias Neckernuss³, Daniel Geiger³, Jonas Pfeil^{1,3}, Eun-Jin Sim⁴, Markus Kiefer⁴, Alexander Behnke¹, Iris T. Kolassa¹, and Othmar Marti¹ ¹Ulm University, GERMANY, ²University of Innsbruck, AUSTRIA, ³Sensific GmbH, GERMANY, and ⁴Ulm University Medical Center, GERMANY

ELECTROBOTATION OF SINGLE CELLS FOR THE ANALYSIS OF T040.a MEMBRANE DAMAGE INDUCED BY THE NEUROTOXIC PROTEIN ALPHA-SYNUCLEIN Till Ryser, Hilal Lashuel, and Carlotta Guiducci École Polytechnique Fédérale de Lausanne, SWITZERLAND T041.a HIGHLY SELECTIVE IMAGE-BASED ELECTROPORATION OF SINGLE CELLS Felix Pfisterer, Neus Godino, Tobias Gerling, Simone De Carli, and Michael Kirschbaum Fraunhofer IZI-BB. GERMANY T042.a LABEL -FREE ANALYSIS OF GROWTH AND LYSIS OF MICROBIAL COMMUNITIES AT THE SINGLE-CELL LEVEL USING OBJECT DETECTION ORIENTED DEEP LEARNING AND DROPLET MICROFLUIDICS Anuj Tiwari, Vasileios Anagnostidis, Robyn Manly, Nela Nikolic, Ben Temperton, and Fabrice Gielen University of Exeter, UK T043.a MICROFLUIDIC MEASUREMENT OF YOUNG'S MODULI OF STORED AND MALARIA-INFECTED SINGLE RED BLOOD CELLS Savita Kumari¹, Priyanka Naik¹, Chhaminder Kaur¹, Vijay Mistari¹, Tanusri Roy¹, Swati Patankar¹, Shamik Sen¹, Dhrubaditya Mitra^{2,3}, and Debiani Paul¹ ¹Indian Institute of Technology, Bombay, INDIA, ²KTH Royal Institute of Technology, SWEDEN, and ³Stockholm University, SWEDEN T044.a **ONE-SHOT SINGLE-CELL PROTEOME AND METABOLOME ANALYSIS** TECHNIQUE FOR THE SAME SINGLE CELL ANALYSIS Jie Wu Zhejiang University, CHINA **RAPID AND ROBUST CONSTRUCTION OF SINGLE CELL CAPTURE** T045.a ARRAY ON DIGITAL MICROFLUIDICS FOR DRUG SCREENING ASSAY Wanging Wu, Wenting Qiu, and Mengsu Yang City University of Hong Kong, HONG KONG T046.a TRANSCRIPTOME, PROTEOME AND METABOLOME PROFILING OF SINGLE MOUSE OOCYTES WITH DROPLET-BASED MICROFLUIDICS AND MASS SPECTROMETRY TECHNIQUES Yi-Rong Jiang¹, Jie Wu¹, Lan-Rui Cao², Hao Wu², Xu-Dong Fu², and Qun Fang^{1,3} ¹Zhejiang University, CHINA, ²Zhejiang University Medical Center, CHINA, and ³ZJU-Hangzhou Global Scientific and Technological Innovation Center, CHINA W037.a A "SMART" HYDROGEL-BASED MICROFLUIDIC PLATFORM FOR SELECTIVE CELL RETRIEVAL Julie Van Lent, Karen Ven, Amelie Remmerie, Vince Engelborghs, Christian Clasen, Karen Vanhoorelbeke, and Jeroen Lammertyn KU Leuven, BELGIUM

SNO

POSTER PRESENTATIONS

W038.a	APPLICATION OF QUANTITATIVE ANALYSIS OF SINGLE-CELL PROTEINS IN LEUKEMIA GATING, TUMOR CLASSIFICATION AND HIERARCHY OF CANCER STEM CELLS Ting Zhang ¹ , Lixing Liu ¹ , Yuanchen Wei ¹ , Chiyuan Gao ¹ , Liangliang Ma ² , Mengge Gao ³ , Xiaosu Zhao ³ , Yixiang Wang ⁴ , Deyong Chen ¹ , Lichao Sun ² , Junbo Wang ¹ , and Jian Chen ¹ ¹ Chinese Academy of Sciences, CHINA, ² Cancer Hospital Chinese Academy of Medical Sciences, CHINA, ³ National Clinical Research
	Center for Hematologic Disease, CHINA, and ⁴ Peking University Hospital of Stomatology, CHINA
W039.a	DETECTION OF SINGLE-CELL CYTOKINE SECRETION USING CELL-BASED REPORTER CELLS IN A HONEYCOMB MICROFLUIDIC DEVICE Jonathan C. Briones ¹ , Wilfred V. Espulgar ² , JeongHoon Park ¹ , Eri Itotagawa ¹ , Shohei Koyama ¹ , Eiichi Tamiya ¹ , Hyota Takamatsu ¹ , and Masato Saito ¹ ¹ Osaka University, JAPAN and ² De La Salle University, PHILIPPINES
W040.a	FETAL NUCLEATED RED BLOOD CELLS (FNRBCS) ISOLATION BASE ON SACA CHIP AND AUTOMATIC FLUORESCENCE IMAGE SYSTEM Hsinyu Yang ^{1,2} , Chunhao Lai ¹ , and Fangang Tseng ^{1,2} ¹ National Tsing Hua University, TAIWAN and ² Academia Sinica, TAIWAN
W041.a	IMPEDANCE FLOW CYTOMETRY CONFIGURED FOR SINGLE-CELL ELECTRICAL-MECHANICAL INTRINSIC CHARACTERIZATION Junwen Zhu ¹ , Yongxiang Feng ¹ , Huichao Chai ¹ , Weihua He ¹ , Liang Huang ² , and Wenhui Wang ¹ ¹ Tsinghua University, CHINA and ² Hefei University of Technology, CHINA
W042.a	MAGNETIC ARTIFICIAL CILIA ACTUATION IN CELL CULTURE MEDIUM FOR STUDYING DYNAMIC MECHANOTRANSDUCTION Roel Kooi, Tanveer UI Islam, Oscar M.J.A. Stassen, Jan de Boer, and Jaap M.J. den Toonder Eindhoven University of Technology, NETHERLANDS
W043.a	NEUROMORPHIC-ENABLED IMAGING FLOW CYTOMETRY WITH MULTI-ANGLE SPATIAL-TEMPORAL ENHANCEMENT Weihua He, Yongxiang Feng, Junwen Zhu, Fei Liang, and Wenhui Wang Tsinghua University, CHINA
W044.a	PARALLEL MONITORING OF SINGLE-CELL CULTURE IN OIL-SEALED HYDROGEL MICROWELLL ARRAY FOR SINGLE-CELL ANALYSIS ON EXOSOMES Chisaki Yamagata ¹ , Shun Itai ¹ , Yuta Kurashina ² , Makoto Asai ¹ , Ayuko Hoshino ³ , and Hiroaki Oneo ¹ ¹ <i>Keio University, JAPAN</i> , ² <i>Tokyo University of Agriculture and Technology,</i> <i>JAPAN, and</i> ³ <i>University of Tokyo, JAPAN</i>
W045.a	RISK IN LONG-TERM OPTICAL MONITORING OF CELL CULTURE: INVESTIGATION OF VISIBLE LIGHT INDUCED DEFECT ON YEAST CELL CYCLE Yingying Wang ¹ , Yulu Geng ¹ , Jiaming Fu ² , Qing-an Huang ¹ , Zhenxiang Yi ¹ , and Zhen Zhu ¹ 'Southeast University, CHINA and ² Nanjing Forestry University, CHINA

W046.a	ULTRA-SENSITIVE FLUORESCENCE-ACTIVATED DROPLET SORTING
	ENABLED BY TETRAMER HYBRIDIZATION CHAIN REACTION
	Long Charl? Viter Livi, and Viengeieng Mi?

Long Chen^{1,2}, Yifan Liu¹, and Xiangqiang Mi² ¹ShanghaiTech University, CHINA and ²Chinese Academy of Sciences, CHINA

Synthetic Biology

M048.a SILICA NANOPARTICLE-ASSEMBLED MICROWELL ARRAY CHIP FOR HIGH-CAPACITY OLIGONUCLEOTIDE SYNTHESIS Duo Fu, Xiao Su, Dachao Li, and Xiaoping Li

Tianjin University, CHINA

T047.a DROPLET-DIGITAL MULTIPLEXED SORTER MICROFLUIDICS FOR STRAIN DEVELOPMENT

Chiara Leal Alves¹, Sebastien Dumont², Fatemeh Ahmadi¹, Ziuwin Leung¹, Zhiyang Deng¹, Michelle Oeser², and Steve C. C. Shih¹ ¹ Concordia University, CANADA and ²Lallemand, CANADA

W047.a INTERFACING ELECTROCHEMICAL MEASUREMENTS WITH MICROFLUIDICS FOR METABOLIC ENGINEERING Nicholas F.O. Crudele, Laszlo Kekedy-Nagy, Chiara Leal Alves, James M. Perry, and Steve C.C. Shih Concordia University, CANADA

Other Applications in Biology

M049.a DETECTION OF A SINGLE AMYLOID NUCLEATION EVENT IN MICROMETER-SIZED PROTEIN DROPLETS FORMED BY LIQUID-LIQUID PHASE SEPARATION

Mao Fukuyama¹, Taiki Ozawa¹, Suguru Nishinami², Yoko Maruyama¹, Shunsuke Tomita³, Yumiko Ohhashi⁴, Motohiro Kasuya⁵, Masao Gen¹, Eri Chatani⁶, Kentaro Shiraki², and Akihide Hibara⁴

¹ Tohoku University, JAPAN, ²University of Tsukuba, JAPAN, ³National Institute of Advanced Industrial Science and Technology (AIST), JAPAN, ⁴ Tokyo Institute of Technology, JAPAN, ⁵Komatsu University, JAPAN, and ⁶Kobe University, JAPAN

M050.a LARGE-SCALE MICROFLUIDIC ELECTROPORATION FOR THE TRANSFORMATION OF PREVIOUSLY GENETICALLY INTRACTABLE BACTERIA

Po-Hsun Huang¹, Yiyin E. Chen¹, Cheng Li¹, Mary Anderson¹, Kerwyn C. Huang², and Cullen R. Buie¹ ¹Massachusetts Institute of Technology, USA and ²Stanford University, USA

M051.a QUANTITATIVE PHASE DEFORMABILITY CYTOMETRY FOR NONINVASIVE HIGH-THROUGHPUT CHARACTERIZATION OF CELLS

Qinru Xiao¹, Yanping He¹, Md Habibur Rahman¹, Guangyao Cheng¹, Renjie Zhou¹, and Yi-Ping Ho^{1,2} ¹ Chinese University of Hong Kong, HONG KONG and

² City University of Hong Kong, HONG KONG

AU NANOROD MIXED PDMS MICROTIP DEVICE FOR HIGHLY T048 a EFFICIENT INTRACELLULAR DELIVERY ACTIVATED BY **INFRARED LIGHT PULSES** Hima Manoj¹, Kavitha Illath¹, Uvanesh Kasiviswanathan³, Srabani Kar², and Tuhin S. Santra¹ ¹Indian Institute of Technology, Madras, INDIA, ²Indian Institute of Science Education and Research Tirupati, INDIA, and ³Motilal Nehru National Institute of Technology, Allahabad, INDIA T049.a DEVELOPMENT NOVEL MICROFLUIDIC DEVICES FOR PASSIVE SEMEN SEPARATION Ilona Grabowska-Jadach, Kamil Żukowski, Sandra Skorupska, Natalia Glapa, Waldemar Kuczyński, Michał Chudy, and Artur Dybko Warsaw University of Technology, POLAND T050.a MICROBIAL ECOSYSTEM ANALYSIS OF BIOCHAR-ENRICHED SOIL IN KENYA USING MICROFLUIDIC SOIL MODELS Erik Karlsson, Edith C. Hammer, Pelle Ohlsson, and Hanbang Zou Lund University, SWEDEN T051.a REAL-TIME MONITORING OF THE ACTIVATION OF CELLULAR STRESS **RESPONSE IN A RECOMBINANT ECOLI REPORTER STRAIN ON A** DIELECTROPHORESIS CHIP Lourdes Albina Nirupa Julius, Dora Akgül, Fabian Falk, Vlad Badilita, and Jan G. Korvink Karlsruhe Institute of Technology, GERMANY W048.a COMBINED EFFECT OF CONFINEMENT AND SHEAR ALTERS **TRYPSIN-MEDIATED DEADHESION OF CELLS IN A** MICROFLUIDIC GRADIENT GENERATOR Senjuti Chakraborty, Shamik Sen, and Debjani Paul Indian Institute of Technology, Bombay, INDIA INTEGRATION OF FIBER OPTICAL SENSORS INTO MICROSYSTEMS W049.a FOR THE DETECTION OF SPECIFIC BIOFILM PATTERNS Nicolas Debener^{1,2}, Nils Heine^{1,3}, Katharina Frings^{1,2}, Maria L. Torres-Mapa^{1,2}, Alexander Heisterkamp^{1,2}, Meike Stiesch^{1,3}, Katharina Doll-Nikutta^{1,3}, Thomas Scheper^{1,2}, and Janina Bahnemann^{1,4} ¹Leibniz University, GERMANY, ²Leibniz University Hannover, GERMANY, ³Hannover Medical School, GERMANY, and ⁴University of Augsburg. GERMANY MODULATION OF IMMUNE RESPONSE USING MAGNETICALLY-W050.a ACTUATED DYNAMIC SURFACES - ADVANCING BIOMATERIALS FOR THE NEXT-GENERATION SMART IMPLANTS Lanhui Li and Burcu Gumuscu Eindhoven University of Technology, NETHERLANDS W051.a STUDY OF PLASMA MEMBRANE AND NUCLEAR ENVELOPE WOUND REPAIR DYNAMICS USING A NANOSTRUCTURED MICROFLUIDICS PLATFORM Apresio K. Fajrial and Xiaoyun Ding University of Colorado, Boulder, USA

b - Diagnostics, Drug Testing & Personalized Medicine Cancer Research, Capture & Analysis of Circulating Tumor Cells M052.b **3D-OXYGEN GRADIENT CHIP FOR CANCER CELL** MIGRATION RESEARCH Pan Zuo, Jelle Sleeboom, and Jaap den Toonder Eindhoven University of Technology, NETHERLANDS M053.b ENHANCING INFILTRATION OF CAR-T CELLS INTO SOLID TUMOR MICROENVIRONMENT THROUGH 3D ADAPTATION Seung Won Oh¹, Junho Lee¹, Sangjoon Lah¹, Jae-Ho Cheong², Chan Hyuk Kim¹, and Pilnam Kim¹ ¹Korea Advanced Institute of Science and Technology (KAIST), KOREA and ²Yonsei University, KOREA M054.b RAPID ISOLATION OF CIRCULATING TUMOR CELLS AND FULL **COLLECTION OF THEIR EXOSOMES USING A THREE-DIMENSIONAL** MICROBEAD ARRAY DESIGN Sungchi Tsai¹, Wen-Yi Chang¹, Yun-Chi Tsai¹, Pyea-Yoo Kim¹, and Howard Doong^{1,2} ¹LifeCode Biotech, TAIWAN and ²Fu-Jen Catholic University, TAIWAN A 3D MANUFTACTURING OF PEUMATIC MICROPUMP TO CAPTURE T052.b CIRCULATING TUMOR CELLS AND AUTOMATED STAINGING WITH FLUORESCENT DYE Sungchi Tsai¹ and Howard Doong^{1,2} ¹LifeCode Biotech, TAIWAN and ²Fu-Jen Catholic University, TAIWAN T053.b ENRICHMENT OF CHEMO-RESISTANT LIVE FLOATING PANCREATIC CANCER CELLS FROM MEDIA OF TUMOR MODEL BASED ON CELL MEMBRANE BIOPHYSICAL METRICS Aditya Rane¹, Javad Jarmoshti¹, Abdullah-Bin Siddique¹, Sara Adair¹, Karina Torres-Castro², Todd W. Bauer¹, Carlos Honrado³, and Nathan S. Swami¹ ¹University of Virginia, USA, ²National Institute of Standards & Technology (NIST), USA, and ³ Iberian International Nanotechnology Institute, PORTUGAL T054.b THE BIOMECHANICS OF DIFFERENT BREAST CANCER CELL SUBTYPES DIFFERS IN RESPONSE TO FAST INDUCED DEFORMATION AND RECOVERY Emile Gasser^{1,2}, Kyohei Terao³, Emilie Su², Nassiba Abbade^{1,2}, Kotryna Vaidziulyte¹, Jean-Baptiste Manneville², Matthieu Piel¹, Jean-Louis Viovy¹, Jean-Yves Pierga¹, and Catherine Villard² ¹Institut Curie, FRANCE, ²Université Paris Cité, FRANCE, and ³Kagawa University, JAPAN W052.b **CANCER RESEARCH, CAPTURE & ANALYSIS OF CIRCULATING TUMOR CELLS** Lu-Wei Chang¹, Xin-Zhi Lee¹, Huan-Wei Liao¹, Hsin-Yu Yang^{1,2}, and Fan-Gang Tseng^{1,2} ¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN 64

W053.b MICROGAP CHANNEL SYSTEM FORMED ON NANOIMPRINTED MICROCONE ARRAY FOR IMMUNOAFFINITY-BASED SELECTION OF RARE CELLS

Yuhei Saito¹, Natsumi Shimmyo¹, Rie Utoh¹, Shuhei Aoyama², Minoru Seki¹, and Masumi Yamada¹ ¹*Chiba University, JAPAN and* ²*Denka Co. Ltd., JAPAN*

Civilization Diseases (diabetes, allergies)

M055.b MICROFLUIDIC IMMUNOSENSING PLATFORM BASED ON ROLLING CIRCLE AMPLIFICATION-ASSISTED DNA DENDRIMER PROBE FOR PORTABLE AND SENSITIVE DETECTION OF ALLERGEN-SPECIFIC IGE Yiyu Chen¹, Huiting Lian¹, Bin Liu¹, Guangming Liu², and Xiaofeng Wei¹ ¹Huaqiao University, CHINA and ²Jimei University, CHINA

T055.b NEW TWO FLOW CHEMILUMINESCENCE-BASED RAPID DIAGNOSTIC TEST (RDT) PLATFORM FOR RAPID DIAGNOSTICS OF CARDIAC BIOMARKERS

Heeyeong Jang, Supreeth Setty, and Chong Ahn University of Cincinnati, USA

W054.b GELMA HYDROGEL IMMUNOWALL DEVICE FOR IL-6 QUANTITATION IN HUMAN SERUM

Yuto Banno, Takuma Nomiyama, Shoma Okuno, and Noritada Kaji *Kyushu University, JAPAN*

Clinical Chemistry

W055.b TARGET-RESPONSIVE CATALYZED HAIRPIN ASSEMBLY-INTEGRATED PHOTOTHERMAL APTASENSOR FOR SENSITIVE AND VISUAL QUANTIFICATION OF CARCINOEMBRYONIC ANTIGEN USING A DISTANCE-BASED MICROFLUIDIC CHIP Xiaofeng Wei, Zhiming Wang, Huiting Lian, and Bin Liu

Huaqiao University, CHINA

Drug Delivery

M056.b A MICROFLUIDICS-BASED METHOD FOR BRAIN TUMOR-TARGETING NANOMEDICINE PREPARATION Ji Wang and Shuhuai Yao

Hong Kong University of Science and Technology, HONG KONG

M057.b DELIVERY OF LARGE CARGO IN MAMMALIAN CELLS ENHANCED BY INFRARED LIGHT PULSE-ACTIVATED MICRO-RING DEVICE

Ashwini S. Shinde¹, Pallavi S. Shinde¹, Kavitha Illath¹, Moeto Nagai², Srabani Kar³, and Tuhin S. Santra¹ ¹Indian Institute of Technology. Madras. INDIA. ²Tovohashi University of

Technology, JAPAN, and ³Indian Institute of Science Education and Research, INDIA

M058.b NANOSTRUCTURED MICROFLUIDICS FOR HIGH-THROUGHPUT NUCLEAR DELIVERY OF PLASMID DNA AND RAPID PROTEIN EXPRESSION

Apresio K. Fajrial, Leyla Akh, and Xiaoyun Ding University of Colorado, Boulder, USA

T056.b	ALGINATE HYDROGEL BEADS WITH TUNABLE CROSS-LINKING RATIO ENABLE PRECISELY CONTROLLED RELEASE OF ADENO-ASSOCIATED VIRUS FOR GENE THERAPY Aiki Hioki ¹ , Shuhei Takatsuka ¹ , Yuta Kurashina ² , and Hiroaki Onoe ¹ ¹ Keio University, JAPAN and ² Tokyo University of Agriculture and Technology, JAPAN
T057.b	DEVELOPMENT OF ARTIFICIAL EXOSOMES USING A MICROFLUIDIC Device for RNA delivery
	Masatoshi Maeki ^{1,2} , Ayuka Niwa ¹ , Shota Oyama ¹ , Akihiko Ishida ¹ ,
	and Manabu Tokeshi ¹
	¹ Hokka <mark>ido University, JAPAN and ²KEK, JAPAN</mark>
W056.b	BIORESIST-BASED SINGLE-CELL ARRAY CHIP FOR STANDARDIZED OPTOPORATION
	Aniket Mishra ¹ , Shunya Okamoto ¹ , Takayuki Shibata ¹ , Tuhin S. Santra ² , and Moeto Nagai ¹
	¹ Toyohashi University of Technology, JAPAN and ² Indian Institute of
	Technology, Madras, INDIA
Y	TO DRUG DELIVERY IN PANCREATIC DUCTAL ADENOCARCINOMA Delanyo Kpeglo ¹ , Margaret A. Knowles ¹ , Malcolm Haddrick ² , Stephen D. Evans ¹ , and Sally A. Peyman ¹ ¹ University of Leeds, UK and ² Medicines Discovery Catapult, UK
	Drug Screening & Development
M059.b	ESTABLISHMENT OF MICROFLUIDIC STAPHYLOCOCCUS AUREUS BIOFILM ON THIOL-ENE POLYMERS FOR ANTIMICROBIAL EFFICACY SCREENING Jéssica Amorim, Cristina D. Cruz, Markus Haapala, Päivi Tammela, and Tiina M. Sikanen University of Helsinki, FINLAND
M060.b	LOW ASPECT RATIO LAMINATION MIXER (LARLM) ENABLED BY Two-Photon Polymerization for Lipid Nanoparticle Synthesis with In-Situ Size Determination
	Ebrahim Taiedinejad
	Technische Universität Braunschweig, GERMANY
M061.b	SIMPLE DROPLET MICROFLUIDICS PLATFORM FOR DRUG SCREENING ON CANCER SPHEROIDS Caroline Parent ¹ , Kiran Raj Melayil ¹ , Ya Zhou ¹ , Vivian Aubert ¹ , Didier Surdez ² , Olivier Delattre ¹ , Claire Wilhelm ¹ , and Jean-Louis Viovy ¹ ¹ Institut Curie, FRANCE and ² Univerity of Zurich, SWEDEN

T058.b DIGITAL TWIN OF MINIATURIZED SYSTEM FOR HOLLOW-FIBER INFECTION MODEL TO ACCELERATE ANTIMICROBIAL RESISTANCE EVALUATION Kazuhiro Noda¹, Toshihiro Kasama¹, Marie Shinohara¹, Masakaze Hamada², Kotaro Aoki², Yukiko T. Matsunaga¹, Madoka Takai¹, Yoshikazu Ishii², and Ryo Miyake¹

Madoka Takai¹, Yoshikazu Ishii², and Ryo Miyake¹ ¹University of Tokyo, JAPAN and ²Toho University, JAPAN

T059.b HIGH-THROUGHPUT DROPLET PLATFORM TO PRODUCE BARCODED APC LIBRARY FOR T CELL ANTIGEN SCREENING Xu Cui

University of Singapore, SINGAPORE

T060.b MICROCHAMBER DEIVICE FOR SIMULTANEOUS ASSESSMENTS OF LOCAL BARRIER FUNCTION AND MORPHOLOGY OF EPITHELIAL CELL SHEET

Ryuya Kida, Mamiko Tsugane, and Hiroaki Suzuki *Chuo University, JAPAN*

W058.b EFFICIENT FULL-LENGTH IGG SECRETION AND SORTING FROM SINGLE YEAST CLONES IN DROPLET PICOREACTORS Esteban Lebrun^{1,2}, Vasily A. Shenshin¹, Cécile Plaire¹, Vincent Vigneres³, Théo Pizette¹, Bruno Dumas¹, Jean-Marc Nicaud², and Guillaume Mottet¹ ¹Sanofi, FRANCE, ²INRAE, FRANCE, and ³Arcale, FRANCE

W059.b LABEL-FREE LONG-TERM VISUALIZATION OF ADHERENT CELL MULTIPOLAR DIVISION UNDER THIAMET-G TREATMENT Fei Liang¹, Peng Zhao¹, Yongxiang Feng¹, Huichao Chai¹, Weihua He¹, Jing Li², and Wenhui Wang¹ ¹Tsinghua University, CHINA and ²Capital Normal University, CHINA

W060.b REPRODUCTION OF INCREASED MUSCLE CONTRACTION FORCE BY FLAVONOIDS USING A MODEL DEVICE WITH ARTIFICIAL SKELETAL MUSCLE

Kota Kishishita, Tomohiro Nakamura, Marino Mizutani, and Sho Yokoyama Osaka Institute of Technology, JAPAN

Liquid Biopsy and Sample Preparation

M062.b DEPLETION OF TUMOUR CELLS FROM ~40 ML SALVAGED BLOOD AT ~5 ML/MIN LEVERAGING MODIFIED PERFECT FILTERS COMBINED WITH LEUKOCYTE-DEPLETED FILTER

Yi Zhang¹, Xiaoqing Zhang², Qingmei Xu¹, Songtao Dou¹, Xiangyang Guo², and Wei Wang^{1,3,4}

¹Peking University, CHINA, ²Peking University Third Hospital, CHINA, ³National Key Laboratory of Advanced Micro and Nano Manufacture Technology, CHINA, and ⁴Beijing Advanced Innovation Center for Integrated Circuits, CHINA

M063.b

b ROBOTIC CENTRIFUGAL MICROFLUIDICS: A NOVEL AUTOMATION PLATFORM FOR LARGE SAMPLE VOLUME APPLICATIONS DEMONSTRATED BY CELL-FREE DNA ISOLATION

Tu T. Truong¹, Yumi Kaku¹, Sara ElGenk¹, Moritz Bösenberg¹, Holger Sültmann², Timo Gemoll³, Nikolas C. C. von Bubnoff³, Sabrina Kartmann^{1,4}, Jan Lüddecke^{1,4}, Tobias Hutzenlaub^{1,4}, Nils Paust^{1,4}, Peter Juelg^{1,4}, Lea Kubetzko³, Stefanie Derer³, Martina Oberländer³, Alexander Katalinic³, Ruth Deck³, Christian Sina³, and Hauke Busch³ ¹Hahn-Schickard, GERMANY, ²German Cancer Research Center (DKFZ), GERMANY, ³University of Lübeck (UKSH), GERMANY, and

T061.b	A MODULAR FINGER-ACTUATED FRUGAL APPROACH FOR POINT-OF-CARE BLOOD SAMPLE PREPARATION Maiwenn Kersaudy Kerhoas Heriot Watt University, UK
T062.b	HIGHLY MULTIPLEXED ANTIBIOTIC SUSCEPTIBILITY ASSAY EMPLOYING COMBINATORIAL PICOLITRE DROPLET GENERATION Ashkan Samimi ^{1,2} , Sundar Hengoju ¹ , and Miriam A. Rosenbaum ^{1,2} ¹ Hans Knöll Institute, GERMANY and ² Friedrich Schiller University, GERMANY
T063.b	STANDALONE ELECTROKINETIC PRECONCENTRATOR FOR ENHANCED DETECTION SENSITIVITY OF COMMERCIALLY AVAILABLE RAPID ASSAYS Barak Sabbagh ^{1,2} , Sinwook Park ² , and Gilad Yossifon ² ¹ Technion - Israel Institute of Technology, ISRAEL and ² Tel Aviv University, ISRAEL
W061.b	ACOUSTOFLUIDIC IMMUNOFLUORESCENCE ENHANCEMENT FOR TEAR-BASED DIABETIC RETINOPATHY DIAGNOSIS Hsuan-An Chen ¹ , Yan-Chin Yen ¹ , Sheng-Min Hsu ² , and Han-Sheng Chuang ^{1,3} ¹ National Cheng Kung University, TAIWAN, ² National Cheng Kung University Hospital, TAIWAN, and ³ Medical Device Innovation Center, TAIWAN
W062.b	ON-CHIP COLORIMETRIC ASSAY FOR POINT-OF-CARE LITHIUM BLOOD LEVEL DETERMINATION USING FINGER-PRICK-BLOOD Carl Olsson ¹ , Federico Ribet ¹ , Janosch Hauser ¹ , Olof Beck ² , Fredrik Wikström ² , Martin Schalling ² , Lena Backlund ² , and Niclas Roxhed ¹ ¹ <i>KTH Royal institute of Technology, SWEDEN and</i> ² <i>Karolinska Institutet, SWEDEN</i>
	Neurobiology/Neuroscience
W063.b	SCREENING OF RNA OLIGONUCLEOTIDE BEACON (MIRNA) FOR NEURODEGENERATIVE BIOMARKERS DETECTION IN MICROFLOUDIC SYSTEMS Weronika Z. Świtlik, Julia Anchimowicz, Magdalena Stobiecka, and Slawomir Jakiela Warsaw University of Life Sciences, POLAND
	Nucleic-Acid Analysis
M064.b	A CENTRIFUGAL MICROFLUIDIC DEVICE CAPABLE OF SEQUENTIAL DISPENSING OF MULTIPLE SAMPLES FOR THE DETECTION OF MULTIPLE FOOD ALLERGENS Daigo Natsuhara ¹ , Yuka Kiba ² , Shunya Okamoto ¹ , Moeto Nagai ¹ , Masashi Kitamura ² , and Takayuki Shibata ¹ ¹ Toyohashi University of Technology, JAPAN and ² Josai University, JAPAN
M065.b	A PROGRAMMABLE DNA-BASED NANOSENSOR FOR SEQUENCE-BASED DETECTION AT SINGLE NUCLEOTIDE RESOLUTION Eun Yeong Lee and Yong Shin Yonsei University, KOREA
	68

PRESENTATIONS

M067.b	DE NOVO ASSEMBLY OF YEAST GENOMES USING OPTICAL GENOME MAPPING Luis M. Leal Garza ¹ , Albertas Dvirnas ² , Gaurav Goyal ¹ , Ikenna Obi ³ , Nasim Sabouri ³ , Tobias Ambjörnsson ² , and Fredrik Westerlund ¹ ¹ Chalmers University of Technology, SWEDEN, ² Lund University, SWEDEN, and ³ Umeå University, SWEDEN
M068.b	LAB-ON-FOIL MICROFLUIDIC CHIP FOR POC DIAGNOSTICS OF GENETIC DISORDER FABRICATED BY R2R UV NIL Anja Haase Joanneum Research Forschungsgesellschaft mbH, AUSTRIA
M070.b	SYNCHRONIZED PHYSICO-CHEMICAL OPTIMIZATION ENABLES RAPID MICROFLUIDIC CONVECTIVE PCR MinGin Kim, Vijay Ravisankar, Yassin A. Hassan, and Victor M. Ugaz Texas A&M University, USA
T064.b	A CUSTOMIZED HEATER PATTERNING PLATFORM BASED ON CARBON BLACK-PDMS AND NICHROME WIRE Juhee Lim and Joong Ho Shin Pukyong National University, KOREA
T065.b	AMPLIFICATION OF SERS INTENSITY FOR DOUBLE-STRANDED DNA DETECTION USING DIFFUSE REFLECTION FACILITATED BY AG/ZNO NANOWIRE ARRAYS Yujin Jung, Jung Kim, Jong Hwan Lee, Sung Kyun Lee, Nam Hoon Kim, and Hong Gi Kim Korea Research Institute of Chemical Technology, KOREA
T066.b	AN INTEGRATED PLATFORM FOR EXTRACTION AND DETECTION OF CHLAMYDIA TRACHOMATIS DNA IN RESOURCE-LIMITED SETTINGS Anton Stolt, Pablo Rodriguez Mateos, Alexander Iles, and Nicole Pamme Stockholm University, SWEDEN
T067.b	ELECTROSTATIC MICROFILTRATION PERFORMS BETTER THAN THE COMMERCIAL KIT IN THE CAPTURE AND DETECTION OF LOW-ABUNDANCE CELL-FREE DNA (CFDNA) Yaoping Liu ¹ , Matilda Yu Yan Ong ² , Melody Xing Yen Song ² , Joshua Raymond ¹ , Chia-Ching Chan ¹ , and Jongyoon Han ^{1,3} ¹ Singapore - MIT Alliance for Research and Technology (SMART), SINGAPORE, ² Ngee Ann Polytechnic, SINGAPORE, and
T068.b	³ <i>Massachusetts Institute of Technology (MIT), USA</i> MICROFLUIDIC PLATFORM FOR DNA SEQUENCE PROFILING TOWARDS EARLY DETECTION OF CANCER Christine O'Keefe, Yang Zhao, Thomas R. Pisanic, Weiwen Cui, Tian-Li Wang, Ie-Ming Shih, and Tza-Huei Wang <i>Johns Hopkins University, USA</i>
T069.b	SIMPLE MOLECULAR DIAGNOSTIC TECHNIQUES FROM SAMPLE PREPARATION USING AMINE-FUNCTIONALIZED DIATOMACEOUS EARTH (AMINE-DE) TO ACCURATE MUTATION DETECTION BY HOT-SPOT-SPECIFIC PROBE (HSSP) Hyo Joo Lee, Bonhan Koo, Yoon Ok Jang, Huifang Liu, and Yong Shin Yonsei University, KOREA

Le	
T070.b	ZNO-AU-SERS DIRECT NUCLEIC ACID AMPLIFICATION SYSTEM FOR RAPID AND SENSITIVE MOLECULAR DIAGNOSTICS Myoung Gyu Kim ¹ , Kwan Hee Lee ² , Mi Yeon Jue ² , Jun Ki Kim ² , and Yong Shin ¹ ¹ University of Yonsei, KOREA and ² University of Ulsan College of Medicine, KOREA
W064.b	A DIGITAL MICROFLUIDIC APPROACH TO ANALYZING FORENSIC SAMPLES Mohamed Elsayed ¹ , Leticia Bodo ¹ , Jonathan Millman ² , and Aaron Wheeler ¹ ¹ University of Toronto, CANADA and ² Centre of Forensic Sciences, CANADA
W065.b	AN EASY-TO-USE MULTIPLEX PCR CHIP BY USING WAX FILM FOR SEALING AND CONTROLLABLE RELEASE OF PRIMERS Yuanyue Zhang, Nan Li, and Youchun Xu Tsinghua University, CHINA
W066.b	AUTOMATION OF DIGITAL DROPLET PCR USING CENTRIFUGAL MICROFLUIDICS FOR HIGHLY SENSITIVE DETECTION AND QUANTIFICATION OF SARS-COV-2 VIRAL RNA Lidija Malic ¹ , Liviu Clime ¹ , Byeong-Ui Moon ¹ , Christina Nassif ¹ , Dillon Da Fonte ¹ , Matthias Geissler ¹ , Aaron Bessoff ¹ , Luke Lukic ¹ , Mojra Janta ¹ , Denis Charlebois ² , and Teodor Veres ¹ ¹ National Research Council Canada, CANADA and ² Canadian Space Agency, CANADA
W067.b	FAST AND ROBUST DETECTION OF SCLEROTIUM ROLFSII VIA WORKFLOW INTEGRATION OF IFAST-BASED EXTRACTION AND LAMP Phanupong Changtor ^{1,2} , Pablo Rodriguez Mateos ¹ , Kittisak Buddhachat ² , Nonglak Yimtragool ² , Wandee Wattanachaiyingcharoen ² , Alexander Iles ¹ , and Nicole Pamme ¹ ¹ Stockholm University, SWEDEN and ² Naresuan University, THAILAND
W068.b	MULTIPLEXED DETECTION OF MICRORNA BIOMARKERS VIA CRISPR-CAS-POWERED GRAPHICALLY-ENCODED HYDROGEL BIOSENSORS Haoliang Lu, Erol Hasan, and Dana Alsulaiman King Abdullah University of Science and Technology, SAUDI ARABIA
W069.b	SPATIAL MULTIPLEXING AND QUANTITATIVE MIRNA DETECTION OF PLANT TISSUE USING NANOLITER WELL ARRAYS Jennifer Fang and Patrick S. Doyle Massachusetts Institute of Technology, USA
	Pathogen Detection & Antibiotics
M071.b	A MICROFLUIDIC COMBINATORY ANTIBIOTIC CONCENTRATION GRADIENT GENERATOR INTEGRATING SURFACE-ENHANCED RAMAN SPECTROSCOPY FOR MULTIPARALLEL ANTIMICROBIAL SUSCEPTIBILITY TESTING Yu-Tung Yeh and Nien-Tsu Huang National Taiwan University, TAIWAN

TER ATIONS

POSTER PRESENTATIONS

the second second	
M072.b	COLLECTION OF STREPTOCOCCUS PYOGENES FROM PEDIATRIC PATIENTS WITH PHARYNGITIS USING THE CANDYCOLLECT DEVICE Wan-chen Tu ¹ , Andrea Blom ² , Ingrid Jeacopello ¹ , Victoria A. M. Shinkawa ¹ , Daniel B. Hatchett ¹ , Juan C. Sanchez ¹ , Anika M. McManamen ¹ , Xiaojing Su ¹ , Elena Alfaro ² , Alexandra Lindstrom ² , Bridget L. Johnson ² , Erwin Berthier ¹ , Sanitta Thongpang ^{1.3} , Ellen R. Wald ² , Gregory P. DeMuri ² , and Ashleigh B. Theberge ¹ ¹ University of Washington, USA, ² University of Wisconsin, USA, and ³ Mahidol University, THAILAND
M073.b	IMPROVING ACCURACY OF DIGITAL MELT VIA OLIGONUCLEOTIDE- ENABLED CURVE ALIGNMENT Amelia Traylor, Pei-Wei Lee, Kuangwen Hsieh, Weiwen Cui, and Jeff Tza-Huei Wang Johns Hopkins University, USA
M074.b	LONG-TERM STORAGE OF READY-TO-USE REAGENTS FOR POINT-OF-CARE ISOTHERMAL NUCLEIC ACID TESTING IN RESOURCE-POOR SETTINGS Giulia Core, Jonathan M. Cooper, and Julien Reboud University of Glasgow, UK
M075.b	OXYGEN CONSUMPTION MONITORING AS A METHOD TO EXPLORE HETERORESISTANCE IN MIXED BACTERIAL POPULATIONS EXPOSED TO ANTIBIOTIC TREATMENT Petra Juskova ¹ , Steven Schmitt ² , Adrian Egli ³ , and Petra S. Dittrich ¹ ¹ ETH Zürich, SWITZERLAND, ² Myria Biosciences AG, SWITZERLAND, and ³ University of Zurich, SWITZERLAND
M076.b	RAPID ANTIMICROBIAL SUSCEPTIBILITY TESTING IN SLIPCHIPS Ka Hei Wat ^{1,2} , Dhruv Mehra ² , Miao Xu ² , Ho Cheung Shum ^{1,2} , and Sammer UI Hassan ^{1,2} ¹ Advanced Biomedical Instrumentation Centre, HONG KONG and ² University of Hong Kong, HONG KONG
T071.b	AN ENCAPSULATED SILVER/CHITOSAN HYDROGEL AS A LONG-ACTING DELIVERY VEHICLE FEATURING WITH ATTRACTED-KILLED INHIBITION MECHANISM IN RALSTONIA SOLANACEARUM Yi-Hsin Chien, Bon-Yen Lin, and Han-Hsiang Shih Feng Chia University, TAIWAN
T072.b	DROPLET MICROFLUIDIC AND DEEP LEARNING POWERED APPROACH FOR LABEL-FREE ANTIMICROBIAL SUSCEPTIBILITY TESTING FOR COLISTIN IN CLINICAL ISOLATES Justine Riti ¹ , Guillaume Sutra ¹ , Thierry Naas ^{2,3,4} , Hervé Volland ¹ , Stéphanie Simon ¹ , and Karla Perez-Toralla ¹ ¹ CEA, FRANCE, ² APHP Hôpital Bicêtre, FRANCE, ³ Université Paris-Saclay-INSERM-CEA, FRANCE, and ⁴ Associated French National Reference Center for Antibiotic Resistance, FRANCE

71

T073.b INTEGRATING A LOLLIPOP-INSPIRED MICROFLUIDIC ORAL SAMPLING DEVICE WITH RAPID GROUP A STREPTOCOCCUS TESTING

Juan C. Sanchez¹, Victoria A. M. Shinkawa¹, Ingrid Jeacopello¹, Xiaojing Su¹, Ellen R. Wald², Gregory P. DeMuri², Erwin Berthier¹, Sanitta Thongpang^{1,3}, and Ashleigh B. Theberge¹ ¹University of Washington, USA, ²University of Wisconsin, USA, and ³Mahidol University, THAILAND

- T074.b MICROFLUIDIC PLATFORM TO VISUALIZE AND QUANTIFY BACTERIAL RESPONSE TO DYNAMIC DRUG TREATMENTS Friederike L. Born, Petra Jusková, and Petra S. Dittrich ETH Zürich, SWITZERLAND
- T075.b PORTABLE DEVICES FOR RNA PURIFICATION, AMPLIFICATION, AND DETECTION OF MAYARO VIRUS Z. Hugh Fan, Morteza Alipanah, John A. Lednicky, and J. Glenn Morris University of Florida, USA

T076.b RAPID DETECTION OF CARBAPENEM RESISTANT ENTEROBACTERIACEAE (CRE) ANTIBIOTIC RESISTANCE WITH STANDALONE POINT-OF-CARE (POC) SELF-COALESCING MICROFLUIDIC

Lily M. Kamat^{1,2,3}, Priscilla Delgado^{1,3}, Ali Haider⁴, Jesse Waggoner⁴, and David R. Myers^{1,2,3}

¹Emory University, USA, ²Georgia Tech, USA, ³Aflac Cancer and Blood Disorders Center of CHOA, USA, and ⁴Emory University School of Medicine, USA

W070.b A HEAT-ACTIVATED ANTIMICROBIAL MICROFILM FOR ELIMINATING PATHOGEN TRANSMISSION IN HIGH TOUCH SURFACES Dimitris Barmpakos^{1,2,3}, Stavroula Kritikou⁴, Athanasios Tsakris⁴,

Georgia Vrioni⁴, and Nikos Chronis^{1,2}

¹National Centre for Scientific Research "Demokritos", GREECE, ²National Technical University of Athens, GREECE, ³University of West Attica, GREECE, and ⁴National and Kapodistrian University of Athens, GREECE

W071.b AN EXTRACORPOREAL PLATELET-POOR PLASMA (PPP) CLOT HEMOADSORPTION FOR IMPROVED TREATMENT OF BACTEREMIA

Bong Hwan Jang, Su Hyun Jung, Seyong Kwon, Sung Jin Park, and Joo H. Kang

Ulsan National Institute of Science and Technology (UNIST), KOREA

- W072.b DUAL MODULE DROPLET-BASED SERS MICROFLUIDIC SENSING PLATFORM FOR HER-2 POSITIVE EXOSOME DETECTION Kwun Hei Willis Ho, Huang Lai, RouLin Zhang, Ching Ying Lam, YuTian Gu, and Mo Yang Hong Kong Polytechnic University, HONG KONG
- W073.b LAB-IN-A-PACKAGE: DETECTING SALMONELLA IN WHOLE CHICKEN SAMPLES IN SITU Akansha Prasad, Shadman Khan, Jonathan K. Monteiro, Jiuxing Li, Fatima Arshad, Liane Ladouceur, Lei Tian, Amid Shakeri, Carlos Filipe, Yingfu Li, and Tohid F. Didar McMaster University, CANADA

POSTER

W074.b	MOVING RAPID ANTIBIOTIC SUSCEPTIBILITY TESTING TO THE CLINIC: THE ROLE OF MASS-MANUFACTURING MICROFLUIDICS IN GENERATING CLINICAL DATA Sarah Needs ¹ , Jessica Hayward ¹ , Stephen P. Kidd ² , and Alexander Edwards ¹ ¹ University of Reading, UK and ² Hampshire Hospitals NHS Foundation Trust, UK
W075.b	POWER-FREE HIV RNA EXTRACTION FROM WHOLE BLOOD FOR REAL-TIME SMARTPHONE-BASED DETECTION Emeka Nwanochie ¹ , Hyunjin Lee ¹ , Dong Hong Lee ¹ , Eddy Odari ² , Steven Wereley ¹ , Tamara Kinzer-Ursem ¹ , and Jacqueline Linnes ¹ ¹ Purdue University, USA and ² Jomo Kenyatta University of Science and Technology, KENYA
W076.b	RAPID DIAGNOSIS OF ANTIMICROBIAL RESISTANCE USING FLOURESCENT PROBE-BASED MOLECULAR IMAGING AND MICROFLUIDIC SYSTEM Brian Choi, Min Seok Lee, Hwi Hyun, Sungho Kim, Hajin Kim, Taejoon Kwon, and Joo H. Kang Ulsan National Institute of Science and Technology (UNIST), KOREA
	Personalized Medicine
M077.b	A THERMAL ACTIVATION METHOD TO IMPROVE SKIN PERMEABILITY FOR HIGHLY EFFICIENT EXTRACTION OF INTERSTITIAL FLUID Hao Zheng, Zhihua Pu, Wangwang Zhu, Yuxiao Ma, Chengcheng Li, Xingguo Zhang, and Dachao Li <i>Tianjin University, CHINA</i>
M078.b	DEVELOPMENT OF A FRUGAL TUMOR ON-CHIP PLATFORM FOR SCREENING DRUG-NANOCARRIERS Dhruba Dhar, Soumen Das, and Jyotirmoy Chatterjee Indian institute of Technology, Kharagpur, INDIA
M079.b	OVERCOMING CO-TRANSFECTION HURDLES FOR CELLULAR/GENE THERAPY: ON-CHIP SEQUENTIAL INTRACELLULAR DELIVERY OF GENETIC CODING MOLECULES VIA AN ACOUSTIC-ELECTRIC MICROFLUIDIC PLATFORM Aida Z. Travatfard, Mohammad Aghaamoo, and Abraham P. Lee University of California, Irvine, USA
M080.b	SILVER ELECTROCEUTICAL TECHNOLOGY TO TREAT SARCOPENIA Min Young Kim ¹ , Hyun Young Shin ² , Sohae Yang ¹ , Aseer Intisar ¹ , and Minseok S. Kim ^{1,2} ¹ Daegu Gyeongbuk Institute of Science & Technology (DGIST), KOREA and ² CTCELLS, Inc, KOREA
T077.b	AN APTAMER-BASED MICRONEEDLE PATCH TO CONTINUOUSLY MONITOR BIOMARKERS OF CARDIOVASCULAR DISEASES Sung-Chi Chang, Chih-Hung Wang, and Gwo-Bin Lee National Tsing Hua University, TAIWAN

EXPLORING THE EFFECTS OF HIGH TEMPERATURE EXPOSURE ON T078.b RNA INTEGRITY FROM STABILIZED BLOOD SAMPLES IN REMOTE RESEARCH STUDIES Filip Stefanovic, Lauren G. Brown, Yuting Zeng, Serena Nguyen, Victoria Shinakawa, Erwin Berthier, Amanda J. Haack, and Ashleigh B. Theberge University of Washington, USA **RAPID IDENTIFICATION OF THERAPEUTIC BACTERIOPHAGES FOR** T079.b PERSONALIZED PHAGE THERAPY USING HIGH THROUGHPUT ALL-INCLUSIVE TABLETS Fereshteh Bayat Bayat, Arwa Hilal, Mathura Thirugnanasampanthar, Carlos Filipe, Tohid F. Didar, and Zeinab Hosseinidoust McMaster University, CANADA T080.b THERANOSTICS MOLECULAR BOBOT: DETECT A MIRNA FROM TUMOR CELLS AND GENERATE THE DNA DRUG IN A LIPOSOME Harune Suzuki¹, Ken Komiya², and Ryuji Kawano¹ ¹ Tokyo University of Agriculture and Technology, JAPAN and ² Japan Agency for Marine-Earth Science and Technology, JAPAN **CELL PROCESSING FOR AUTOLOGOUS CELL THERAPY:** W077.b HIGH-EFFICIENCY MICROFLUIDIC CELL SEPERATION AND WASHING DEVICES An Eng Lim, Shan Mei Tan, and Shireen Goh Agency for Science, Technology and Research (A*STAR), SINGAPORE W078.b METAL-POLYMER SERIES CONNECTION HYBRID STENT INTEGRATED WITH PI BASED WIRELESS PRESSURE SENSOR Lei Wang, Dong-Su Kim, Nomin-Erdene Ovunbaatar. and Dong-Weon Lee Chonnam University, KOREA **RAPID IMMUNE RESPONSE ASSESSMENT FOR POST-INFUSION** W079.b CAR-T PATIENTS THROUGH BIOPHYSICAL WBC ANALYSIS Kwan Zen Nicholas Tan¹, Zeming Kerwin Kewk¹, Kai Yun Quek¹, Chin Ren Goh¹, Zhi Heng Nicholas Ng¹, Wei Inng Francesca Lorraine Lim², Yun Xin Chen², Michael E. Birnbaum³, and Jongyoon Han³ ¹Singapore - MIT Alliance for Research and Technology (SMART), SINGAPORE.² Singapore General Hospital. SINGAPORE, and ³Massachusetts Institute of Technology, USA WORKFLOW INTEGRATION FOR ELECTROCHEMICAL-BASED W080.b HOME-TESTING Fabien Abeille¹, Bianka Fabinyi¹, Jelle Bannink¹, Thérèse Gorisse¹, Daniel-Stefan Cristea², Marko Blom¹, and Winnie E. Svendsen² ¹Micronit BV, NETHERLANDS and ²Technical University of Denmark, DENMARK

Protein Analysis & Proteomics

M081.b DIGITAL MAGNETIC PROXIMITY EXTENSION RPA-CRISPR/CAS12A-ASSISTED IMMUNOASSAY WITH ATTOMOLAR SENSITIVITY Fangchi Shao, Jiumei Hu, Kuangwen Hsieh, Pengfei Zhang, Pataraiarin Akarapipad, Joon Soo Park, and Tza-Huei Wang Johns Hopkins University, USA

ų

POSTER

FI:C

LEC	
M082.b	INTEGRATED STRATEGY FOR STREAMLINED SINGLE-CELL FUNCTIONAL PROTEOMICS AND SENSITIVE DOPAMINE DETECTION Hsiung-Lin Tu ¹ , Sofani Gebreyesus ¹ , Gul Muneer ¹ , Ying Li ¹ , Asad Ali ¹ , Chih-Min Wang ² , and Yu-Ju Chen ¹ ¹ Academia Sinica, TAIWAN and ² National Taiwan Ocean University, TAIWAN
T081.b	DISPOSABLE, FLEXIBLE MICROFLUIDIC SYSTEM FOR RAPID, PRE-ANALYTICAL SEPARATION OF IGG ANTIBODIES FROM SERUM SAMPLES Marcin Drozd, Katarzyna Tokarska, Zuzanna Tylenda, Sylwia Karoń, Kamil Żukowski, Mariusz Pietrzak, Elżbieta Malinowska, and Zbigniew Brzózka Warsaw University of Technology, POLAND
T082.b	MAMMOTHFLUIDICS': AMINO ACID DATING OF FOSSILISED TEETH Laila Patinglag ¹ , Marc R. Dickinson ² , Kirsty EH. Penkman ² , and Kirsty J. Shaw ¹ ¹ Manchester Metropolitan University, UK and ² University of York, UK
W081.b	ELECTROKINETIC TRAPPING AND QUANTIFICATION OF HISTONES FROM PLASMA IN A MICROFLUIDIC DEVICE USING DEHYDRATED ISOELECTRIC GATES Shadi Shahriari, Patricia P. Liaw, Alison E. Fox-Robichaud, and Ponnambalam Ravi Selvaganapathy McMaster University, CANADA
Testin	g for COVID-19, Rapid Virus Testing, Pandemic Management
M083.b	APPLICATION OF ONE-POT DUAL-CLAMPED SERS-BASED DIAGNOSTIC PLATFORM IN THE DETECTION OF SARS-COV-2 FROM CLINICAL SAMPLES: COMPARISON WITH COMMERCIAL RAPID ANTIGEN TEST KITS Kiran Kaladharan ¹ and Fan-Gang Tseng ^{1,2} ¹ National Tsing Hua University, TAIWAN and ² Academia Sinica, TAIWAN
M084.b	HPV 16 DNA AMPLIFICATION AND DETECTION FROM CELL LYSATES, ON A PAPER SUBSTRATE, WITH A LATERAL FLOW READOUT Luke Brennan, Francesca Hamacher, Ana Claure, Jacqueline Linnes, and Natalia Rodriguez Purdue University, USA
M085.b	INTEGRATED MICROFLUIDIC PLATFORM AND BIO-OPTICAL SENSOR SYSTEM: A RAPID AND SENSITIVE SAMPLE-TO-ANSWER DIAGNOSTIC APPROACH FOR EMERGING INFECTIOUS DISEASES Bonhan Koo, Myoung Gyu Kim, and Yong Shin Yonsei University, KOREA
M086.b	ON-CHIP RPA AND CAS12A ASSAY USING AUNIS-BASED PLASMONIC PCR SYSTEM FOR REAL-TIME SARS-COV-2 DETECTION Eun-Sil Yu, Hyejeong Jeong, Jaehyeok Park, Jaemyeong Kwon, and Ki-hun Jeong Korea Advanced Institute of Science and Technology (KAIST), KOREA

M087.b	RNASTICK: HASSLE-FREE DIPSTICK BASED RNA ISOLATION FROM WASTEWATER Shruti Ahuja, Maria D'costa, Avani Kulkarni, Kiran Kondabagil, and Siddharth Tallur Indian Institute of Technology, Bombay, INDIA
T083.b	CENTRIFUGAL FORCE-ASSISTED THERMAL CONVECTION PCR DEVICE FOR RAPID DETECTION OF VIRAL RNA IN SALIVA: A PROMISING POINT-OF-CARE TESTING APPROACH Masato Saito ¹ , Jonathan Briones ¹ , Ryota Kokutani ² , Yasutaka Minegishi ² , Shigeto Hamaguchi ¹ , and Satoshi Kutsuna ¹ ¹ Osaka University, JAPAN and ² NIPPON GENE Co., LTD., JAPAN
T084.b	IMMUNOCHROMATOGRAPHIC HCG TEST STRIPS USING GOLD NANOTRIANGLES Asahi Kimura, Mao Hamamoto, and Hiromasa Yagyu Kanto Gakuin University, JAPAN
T085.b	LAB-ON-A-FOIL MICROFLUIDIC SYSTEM FOR SARS-COV-2 DIAGNOSTICS Kamil Żukowski ¹ , Katarzyna Tokarska ¹ , Marcin Drozd ¹ , Mariusz Pietrzak ¹ , Adam Nowiński ² , Elżbieta Malinowska ¹ , and Zbigniew Brzózka ¹ ¹ Warsaw University of Technology, POLAND and ² Screenmed, POLAND
T086.b	POINT-OF-CARE PATHOGEN TESTING PLATFORM WITH INTEGRATED SAMPLE AMPLIFICATION CONTROL Navaporn Sritong, Riley J. Brown, Karin F. K. Ejendal, and Jacqueline C. Linnes Purdue University, USA
T087.b	TOWARDS DETECTION OF AIRBORNE PATHOGENIC MICROORGANISMS BY A MICROTOTAL ANALYSIS SYSTEM Guillaume Blaire, Manuel Alessio, Melissa Baque, Fabrice Navarro, and Jean-Maxime Roux CEA Leti, FRANCE
W082.b	ABSOLUTE ELECTRICAL QUANTIFICATION OF TARGET NUCLEIC ACID USING DIGITAL SORT-ENABLED COUNTING (DISCO) Yi Liu and Xu Cui University of Singapore, SINGAPORE
W083.b	DIGITAL FOCUS ASSAY PLATFORM FOR THE QUANTIFICATION OF VIABLE VIRUSES
	Siddharth Baghu Srimathi, Maxinne A. Ignacio, Margaret A. Scull

Siddharth Raghu Srimathi, Maxinne A. Ignacio, Margaret A. Scull, and Don L. DeVoe *University of Maryland, USA*

PRESENTATIONS

POSTER PRESENTATIONS

W084.b	INEXPENSIVE-BY-DESIGN, VERSATILE AND INTUITIVE MOLECULAR DIAGNOSTICS PLATFORM FOR POINT OF USE Laura Folkertsma ^{1,2} , Alvaro J. Conde ¹ , Brigitte B. Bruijns ^{3,4} , Arno C. Pol ⁵ , Elsa Dragt ⁶ , Michelle G. van Heteren ¹ , Elwin X. Vrouwe ¹ , Lisanne P. Karbaat ⁷ , Frank van der Hoek ⁸ , Marko Blom ¹ , Tom Evers ⁶ , Han J.W. Zendman ⁵ , Herbert Torfs ² , and Ronny van 't Oever ¹ ¹ Micronit BV, NETHERLANDS, ² Salvitat BV, NETHERLANDS, ³ Saxion University of Applied Sciences, NETHERLANDS, ⁴ Politieacademie, NETHERLANDS, ⁷ Holland Innovative, NETHERLANDS, and ⁸ Fris en Fruitig VZW
W085.b	LYOPHILIZED CHEMILUMINESCENCE (CL) BASED MICROCAPILLARY FLOW ASSAY (MCFA) LAB CHIPS FOR RAPID AND HIGH-SENSITIVE TESTS OF SARS-COV-2 Supreeth Setty ¹ , Heeyeong Jang ¹ , Nogi Park ² , Keun Seok Seo ² , and Ahn Chong ¹ ¹ University of Cincinnati, USA and ² Mississippi State University, USA
W086.b	RAPID SINGLE-ROUND POOL TESTING OF INFECTIOUS DISEASE ENABLED BY MULTICOLOR DIGITAL MELTING PCR Xu Cui University of Singapore, SINGAPORE
	Others
M088.b T088.b W087.b	CAPTURE AND CHARACTERIZATION OF EXTRACELLULAR VESICLES BY DIELECTROPHORESIS Charlotte Neel ^{1,2} , Jean F. Audibert ¹ , Sameh Obeid ² , Rasta Ghasemi ¹ , Sakina Bensalem ¹ , Zuzana Krupova ³ , Myriam Taverna ² , and Bruno Le-Pioufle ¹ ¹ <i>ENS Paris-Saclay, FRANCE</i> , ² <i>Institut Galien Paris-Saclay, FRANCE, and</i> ³ <i>Excilone, FRANCE</i> FULLY-AUTOMATIC MICROFLUIDIC BEAD-BASED ASSAY FOR FAST QUANTIFICATION OF MULTIPLE KIDNEY FAILURE BIOMARKERS Gloria Porro École Polytechnique Fédérale de Lausanne, SWITZERLAND A MICROFLUIDIC SYSTEM INTEGRATED WITH A SHEAR FORCE CONTROL DEVICE TO OPTIMIZE SELECTION OF APTAMERS TARGETING FOLATE RECEPTOR ALPHA Yang-Sheng Shao, Yi-Cheng Tsai, and Gwo-Bin Lee
	University of Tsing Hua, TAIWAN

POSTER PRESENTATIONS

	c - Fundamentals in Microfluidics and Nanofluidics
	Acousto- and Magnetofluidics
M089.c	ACOUSTIC SENSING OF BIOANALYTES WITH FUNCTIONALIZED MICROBUBBLES Marc Prudhomme ¹ , Mahmoud Addouche ¹ , Jacques Fattaccioli ² , and Franck Chollet ¹ ¹ FEMTO-ST, FRANCE and ² ENS Paris, FRANCE
M090.c	ACOUSTOFLUIDICS IN LAB-ON-A-ROBOT APPLICATION Cornel Dillinger ¹ , Till Häussner ¹ , Nitesh Nama ² , and Daniel Ahmed ¹ ¹ ETH Zürich, SWITZERLAND and ² University of Nebraska, Lincoln, USA
M091.c	FULLY MICROFABRICATED SURFACE ACOUSTIC WAVE TWEEZER FOR (SUB-)MICRON PARTICLE FOCUSING Armaghan Fakhfouri ¹ , Melanie Colditz ¹ , Citsabehsan Devendran ² , Stefan Jacob ³ , Kateryna Ivanova ¹ , Adrian Neild ² , and Andreas Winkler ¹ ¹ Leibniz IFW Dresden, GERMANY, ² Monash University, AUSTRALIA, and ³ Physikalisch-Technische Bundesanstalt, GERMANY
M092.c	LEVERAGING PIEZOELECTRIC MICROMACHINED ULTRASONIC TRANSDUCERS (PMUT) FOR 3D ACOUSTOFLUIDIC MANIPULATION OF PARTICLES AND ORGANOIDS Emilie Vuille-dit-Bille ^{1,2} , Sarah Heub ¹ , Dara Z. Bayat ¹ , Marc-Alexandre Dubois ¹ , Thomas Overstolz ¹ , Michel Despont ¹ , Selman Sakar ² , and Gilles Weder ¹ ¹ CSEM SA, SWITZERLAND and ² École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND
M093.c	NAVIGATION OF ULTRASOUND MICROROBOTS THROUGH OBSTACLES BY MEANS OF AN AUTONOMOUS SYSTEM Mahmoud Medany ¹ , Sarp Sepici ¹ , S. Karthik Mukkavilli ² , and Daniel Ahmed ¹ ¹ ETH Zürich, SWITZERLAND and ² IBM Research, SWITZERLAND
M094.c	SILICA SEED PARTICLES IMPROVE NANOPARTICLE ACOUSTIC TRAPPING EFFICIENCY AND THROUGHPUT Megan Havers ¹ , Thierry Baasch ¹ , Andreas Lenshof ¹ , Mikael Evander ² , and Thomas Laurell ¹ ¹ Lund University, SWEDEN and ² AcouSort AB, SWEDEN
M095.c	UPSCALING OF ACOUSTIC FOCUSING OF PARTICLES IN A PARALLEL CHANNEL CONFIGURATION Amaury A. de Hemptinne, Pierre P. Gelin, and Wim W. De Malsche Vrije Universiteit Brussel (VUB), BELGIUM
T089.c	ACOUSTICALLY LEVITATED DROPLET AS A MICROGRAVITY SIMULATOR Sreejith Kamalalayam Rajan, Aditya Vashi, and Nam-Trung Nguyen Griffith University, AUSTRALIA
T090.c	CELL CONCENTRATION BY USING SIMPLE ACOUSTOFLUIDIC SYSTEM WITH LOW SAMPLE LOSS FOR RARE CELL APPLICATIONS Natsumi Hirata, Hayato Yamaki, and Takeshi Hayakawa <i>Chuo University, JAPAN</i>
	78

PRESENTATIONS

Le	
T091.c	HIGH-POWER ACOUSTOFLUIDICS DRIVEN BY LINE DOUBLE-PARABOLIC-REFLECTORS WAVE-GUIDED HIGH-POWER ULTRASONIC TRANSDUCER Enrico Corato ¹ , Wei Qiu ¹ , Takeshi Morita ² , and Per Augustsson ¹ ¹ Lund University, SWEDEN and ² University of Tokyo, JAPAN
T092.c	MANIPULATION OF THE POSITION AND ORIENTATION OF PROLATE SPHEROIDS IN A PSEUDO-STANDING SURFACE ACOUSTIC WAVE FIELD Sebastian Sachs ¹ , Christian Cierpka ^{1,2} , and Jörg König ¹ ¹ Technische Universität Ilmenau, GERMANY and ² Lund University, SWEDEN
T093.c	PRECISION GUIDED NON-INVASIVE TREATMENT OF ANEURYSMS USING ACOUSTIC ROBOTICS Mahmoud Medany and Daniel Ahmed ETH Zürich, SWITZERLAND
T094.c	SURFACE ACOUSTIC WAVE MICROFLUIDIC DEVICE ENABLES RAPID PROTEIN CONCENTRATION ANALYSIS IN BLOOD PLASMA Nakul Sridhar ¹ , Julie McAfee ² , Rachelle Nuss ² , Kathryn Hassell ² , and Xiaoyun Ding ¹ ¹ University of Colorado, Boulder, USA and ² University of Colorado, Anschutz, USA
W089.c	ACOUSTOFLUIDIC PROPERTIES OF POLYSTYRENE PARTICLES Alexander Edthofer ¹ , Jakub Novotny ² , Andreas Lenshof ¹ , Thomas Laurell ¹ , and Thierry Baasch ¹ ¹ Lund University, SWEDEN and ² Institute of Analytical Chemistry of the CAS, CZECH REPUBLIC
W090.c	ECHOTILT: A LOW-COST ACOUSTOFLUIDIC METHOD FOR HIGH FLOW RATE ENVIRONMENTAL NANOPLASTIC ENRICHMENT Liesbeth G. B. van der Geer, Martim Costa, Björn Hammarström, Selim Tanriverdi, Haakan N. Joensson, Martin Wiklund, and Aman Russom KTH Royal institute of Technology, SWEDEN
W091.c	INVESTIGATION ON PARTICLE DEFLECTION IN SURFACE ACOUSTIC WAVE MICROFLUIDIC DEVICE FOR EFFICIENT EXOSOME EXTRACTION Tao Peng University of Macau, CHINA
W092.c	MICROSCALE PARTICLE MANIPULATION USING AN ACOUSTOFLUIDIC END EFFECTOR ASSISTED BY ROBOTIC ARM Jan Durrer ¹ , Prajwal Agrawa ¹¹ , Ali Ozgul ¹ , Stephan Neuhuass ² , Nitesh Nama ³ , and Daniel Ahmed ¹ ¹ <i>ETH Zürich, SWITZERLAND,</i> ² <i>University of Zurich, SWITZERLAND, and</i> ³ <i>University of Nebraska, Lincoln, USA</i>
W093.c	RECONFIGURATION OF ACOUSTOFLUIDICS VIA TUNING THE COMPETITION BETWEEN DIFFERENT WAVE MODES Yu Gao and Xiaoyun Ding University of Colorado, Boulder, USA

79

W094.c	THE ACOUSTOPHORETIC MIGRATION AND SEPARATION OF SUSPENDED CELLS IN ACOUSTIC IMPEDANCE GRADIENTS Mahdi Rezayati Charan and Per Augustsson Lund University, SWEDEN
	Capillary Microfluidics
M096.c	LABEL-FREE ANTIMICROBIAL SUSCEPTIBILITY TESTING IN MICROFLUIDIC 'DIP STICKS'
	Zhuoling Yu ¹ , Sarah H. Needs ² , Brian V. Jones ¹ , Alexander D. Edwards ² , and Nuno M. Reis ¹
	¹ University of Bath, UK and ² University of Reading, UK
M097.c	ON THE DYNAMIC CONTACT ANGLE OF CAPILLARY-DRIVEN Microflows in open channels
	Jodie C. Tokihiro, Jean Berthier, Anika M. McManamen, David N. Phan, Sanitta Thongpang, and Ashleigh B. Theberge University of Washington, USA
T095.c	3D INVESTIGATION OF DROPLET FORMATION AND GEOMETRY- INDUCED SINGLE DROPLET COALESCENCE USING MICRO-COMPUTED TOMOGRAPHY
	Bastian Oldach, Carolin Müller, Philipp Wintermeyer, and Norbert Kockmann
	TU Dortmund University, GERMANY
T096.c	MICROFLUIDIC GENERATION OF MICRO-SOAP BUBBLES FOR AIRBORNE MOLECULAR ROBOT
	Rina Takagi and Ryuji Kawano Tokyo University of Agriculture and Technology, JAPAN
T097.c	TIME- AND DISTANCE-RESOLVED FLUID FLOW IN VERTICAL MICROFLUIDIC STRIPS: A NEW OPEN SOURCE ROBOTIC PLATFORM FOR QUANTITATIVE, MULTIPARAMETER MEASUREMENT OF GLOBAL HAEMOSTASIS AND BLOOD FUNCTION
	Rüya M. Sarıyer ¹ , Kirandeep Gill ² , Sarah H. Needs ¹ , Daniel Hodge ¹ , Nuno M. Reis ² , Chris I. Jones ¹ , and Alexander D. Edwards ¹ ¹ <i>University of Reading, UK and ²University of Bath, UK</i>
W095.c	DETERMINISTIC CELL-PARTICLE PAIRING DEVICE IN THE OPEN MICROFLUIDICS ARCHITECTURE TOWARD SINGLE-CELL
	RNA SEQUENCING Hiroto Teratani, Tomoki Murakami, and Hiroaki Suzuki Chuo University, JAPAN
W096.c	MULTIPHASE RESERVOIR SUBCIRCUIT FOR MICROFLUIDIC CHAIN REACTION OF IMMISCIBLE AND MISCIBLE MULTIPHASE LIQUIDS IN CAPILLARIC CIRCUITS
	Geunyong Kim, Andy Ng, David Juncker McGill University, CANADA
	Centrifugal Microfluidics
M098.c	A PORTABLE LAB ON A DISC PLATFORM FOR CONTINUOUS HANDLING OF WIDE RANGE OF SAMPLE VOLUME Sourav Acharya, Jasleen Chhabra, Soumyo Mukherji, and Debjani Paul Indian Institute of Technology, Bombay, INDIA

PRESENTATIONS

POSTER PRESENTATIONS

M099.c	AUTOMATING COMPLEX DNA LIBRARY PREPARATION PROCEDURES IN CENTRIFUGAL MICROFLUIDICS Daniel Brassard ¹ , Jimin Guo ¹ , Nadine Adam ² , Adrian Vester ² , Julie Shay ² , Caroline Miville-Godin ¹ , Mojra Janta-Polczynski ¹ , Jason Ferreira ¹ , Maxence Mounier ¹ , Kyle Tapp ² , Ana Pilar ² , and Matthew Shiu ¹ ¹ National Research Council, CANADA, ² Health Canada, CANADA, and ³ Canadian Space Agency, CANADA
M100.c	FAST AND BUBBLE-FREE FILLING OF NANOIMPRINTED HIGH-DENSITY PICOLITER WELL ARRAYS FOR DIGITAL ASSAYS ENABLED BY CENTRIFUGAL MICROFLUIDICS Salman Murad ¹ , Marvin Heyer ¹ , Fabian Lickert ² , Julian Menges ² , Silvia Calabrese ² , Tobias Hutzenlaub ^{1,2} , Nils Paust ^{1,2} , and Peter Juelg ^{1,2} ¹ IMTEK, GERMANY and ² Hahn-Schickard, GERMANY
M101.c	INDUCTION HEATING FOR LAB-ON-A-DISC APPLICATIONS Tadej Kokalj ¹ , Marko Mahne ² , Indradumna Banerjee ³ , Franci Vode ¹ , Aman Russom ³ , and Matjaz Vencelj ² ¹ Institute of Metals and Technology, SLOVENIA, ² Jozef Stefan Institute, SLOVENIA, and ³ KTH Royal Institute of Technology, SWEDEN
T098.c	A RAPID PCR SYSTEM BASED ON CENTRIFUGAL MICROFLUIDICS WITH TEC-BASED CONTACT HEATING Yu Wu and Youchun Xu Tsinghua University, CHINA
T099.c	CENTRIFUGAL GRAVITY ENABLES VOID-FREE PRIMING OF DEAD-END NANOLITER CAVITIES Yu-Kai Lai ¹ , Jacob F. Hess ^{1,2} , and Nils Paust ^{1,2} ¹ University of Freiburg, GERMANY and ² Hahn-Schickard, GERMANY
T100.c	FLIPPING AS A CONTROL STRATEGY FOR CENTRIFUGAL MICROFLUIDIC SYSTEMS Ali Gholizadeh, Gabriel Mazzucchelli, and Tristan Gilet University of Liège, BELGIUM
W097.c	A METHOD FOR BUBBLE-FREE REAGENT DISCRETIZATION AND AUTOMATED DIGITAL POYMERASE CHAIN REACTION ON CENTRIFUGAL MICROFLUIDICS Tae-Hyeong Kim, Daniel Brassard, Lidija Malic, Keith J. Morton, Christina Nassif, Dillon Da Fonte, Luke Lukic, Jason Ferreira, Caroline Miville-Godin, Maxence Mounier, Aaron Bessoff, and Teodor Veres National Research Council Canada, CANADA
W098.c	ALGORITHMIC DESIGN OPTIMIZATION AND PROGRAMMABILITY OF HIGHLY INTEGRATED LAB-ON-A-DISC SYSTEMS Jens Ducree Dublin City University, IRELAND

POSTER PRESENTATIONS

W099.c	DEVELOPMENT OF AN AUTOMATED NUCLEAR ACID AMPLIFICATION ASSAY WITH ELECTROCHEMICAL MONITORING USING AN ELECTRIFIED-LAB-ON-A-DISC PLATFORM Fabian 0. Romero-Soto ¹ , Meysam Saeedi ¹ , Dario Mager ² , Mohammad M. Aeinehvand ¹ , and Sergio 0. Martinez-Chapa ¹ ¹ Tecnologico de Monterrey, MEXICO and ² Karlsruhe Institute of Technology, GERMANY
W100.c	HYPERGRAVITY CELL CULTURE SYSTEM THROUGH SPINNING OF THE MAGNETIC COUPLING DISK Byeongwook Jo and Shoji Takeuchi University of Tokyo, JAPAN
	Digital Microfluidics
M102.c	ABSOLUTE QUANTIFICATION OF NUCLEIC ACID ON DIGITAL MICROFLUIDICS PLATFORM BASED ON SUPERHYDROPHOBIC- SUPERHYDROPHILIC MICROPATTERNING Li Meng ¹ , Mingzhong Li ¹ , Man-Kay Law ¹ , Pui-In Mak ¹ , and Rui P. Martins ^{1,2} ¹ University of Macau, CHINA and ² Universidade de Lisboa, PORTUGAL
M103.c	ENABLING LONG-TERM LIQUID HANDLING IN DIGITAL MICROFLUIDICS PLATFORMS FOR CELL CULTURE SETTINGS Oksana K. Savchak and Burcu Gumuscu Eindhoven University of Technology, NETHERLANDS
T102.c	DEVELOPMENT OF A 3D FABRICATED DIGITAL MICROFLUIDIC PLATFORM FOR MULTIPLEXED OPERATIONS ON LARGE ELECTRODE ARRAYS Mert Ozden and Burcu Gumuscu-Sefunc Eindhoven University of Technology, NETHERLANDS
T103.c	HIGH-THROUGHPUT AND LOW-COST ORTHOGONAL ELECTRODE MATRIX DIGITAL MICROFLUDICS CHIP Yufan Wang ¹ , Chi Chung Tsoi ³ , Xiaodong Lin ² , Haoran Li ¹ , Ren Shen ¹ , Xuming Zhang ³ , and Yanwei Jia ¹ ¹ University of Macau, CHINA, ² Macau Zhuhai UM Science & Technology Research Institute, CHINA, and ³ Hong Kong Polytechnic University, CHINA
W101.c	A PORTABLE, INTEGRATED SYSTEM FOR ON-CHIP ANTIBIOTIC SUSCEPTIBILITY TESTING Caiwei Li University of Macau, MACAO
W102.c	DRUG SCREENING OF PRIMARY TUMOR CELLS ON SMART DIGITAL MICROFLUIDICS FOR CANCER PRECISION MEDICINE Yingying Liu, Caiwei Li, Wenhao Hui, Pui-in Mak, Rui P. Martins, and Yanwei Jia University of Macau, CHINA
W103.c	POLARITY-DEPENDENT ELECTRO-WETTING OR -DEWETTING ON A CONDUCTIVE SILICON SUBSTRATE Lele Zhou ShanghaiTech University, CHINA

POSTER PRESENTATIONS

	Droplet Microfluidics
M104.c	"PICO'CLOCK" - HIGHLY CONTROLLABLE PICOINJECTION FOR TIMED REACTIONS IN DROPLET MICROFLUIDICS Jolien Breukers and Jeroen Lammertyn <i>KU Leuven, BELGIUM</i>
M105.c	A NOVEL STRATEGY TO SYNTHESIZE FLUORINATED SURFACTANT AND ITS APPLICATIONS IN DROPLET MICROFLUIDICS Jiyuan Yao ^{1,2} , Lingling Shui ² , Shuting Xie ² , Loes Segerink ¹ , and Sergii Pud ¹ ¹ University of Twente, NETHERLANDS and ² South China Normal University, CHINA
M106.c	CHARACTERIZATION OF DROPLET GENERATION THROUGH A POST-ARRAY DEVICE Shuzo Masui, Yusuke Kanno, and Takasi Nisisako Tokyo Institute of Technology, JAPAN
M107.c	DOUBLING ACCELERATION OF SYNTHESIS SPEED OF METAL COMPLEXES BY SCALE EFFECTS IN MICRODROPLETS Masashi Kobayashi ¹ , Tomoya Murashige ¹ , Takashiro Akitsu ² , Hiroyuki Fujita ³ , Takashi Tanii ¹ , Masahiro Furuya ¹ , Tetsushi Sekiguchi ¹ , Shuichi Shoji ¹ , Risa Fujita ⁴ , and Daiki Tanaka ⁴ ¹ Waseda University, JAPAN, ² Tokyo University of Science, JAPAN, ³ Canon Medical Systems Corporation, JAPAN, and ⁴ Research Organization for Nano & Life Innovation, JAPAN
M108.c	ELECTROKINETIC DESALTING AND SALTING OF WATER-IN-OIL DROPLETS Aparna Krishnamurthy and Robbyn K. Anand Iowa State University, USA
M109.c	FORMATION OF DNA-FUNCTIONALIZED COLLOIDAL CRYSTALS IN A MICRODROPLET Naotomo Tottori ¹ , Azusa Takao ¹ , Maasa Yokomori ¹ , Miho Tagawa ² , Shigeo S. Sugano ³ , Shinya Sakuma ¹ , and Yoko Yamanishi ¹ ¹ <i>Kyushu University, JAPAN, ²Nagoya University, JAPAN, and</i> ³ <i>National Institute of Advanced Industrial Science and</i> <i>Technology (AIST), JAPAN</i>
M110.c	LMOI: A NOVEL EVAPORATION TUNABLE MICROREACTOR PLATFORM Rutvik Lathia, Satchit Nagpal, Chandantaru D. Modak, Bheema Reddy, and Prosenjit Sen Indian Institute of Science, INDIA
M111.c	OIL-INFUSED SIEVE-BASED TRAPPING SYSTEM FOR VERSATILE 3D CELL CULTURE AND BIOCHEMICAL APPLICATIONS Bheema S. Reddy, Rutvik Lathia, Chandantaru D. Modak, Satyarthi Mishra, Ramray Bhat, and Prosenjit Sen Indian Institute of Science, WOW

Indian Institute of Science, INDIA

POSTER PRESENTATIONS

 T106.c CONTROLLED ATPS DROPLET FORMATION AND CAPTURE USING MICROFLUIDICS Hailin Fu, Chris Li, Tongsheng Wang, Kalpit Bakal, Jaap M. J. den Toonder, Bert E. W. Meijer, and Hans M. Wyss *TU Eindhoven, NETHERLANDS* T107.c DROPLET MICROFLUIDIC BASED FABRICATION OF SOFT MICROROBOTS WITH TAILORED MAGNETIC ANISOTROPY Chao Song, Yimo Yan, Michael G. Christiansen, Stavros Stavrakis, Simone Schürle, and Andrew deMello

ETH Zürich, SWITZERLAND

- T108.c FABRICATION OF CRESCENT-SHAPED PARTICLES FOF PARTICLE-TEMPLATED DROPLET FORMATION Yimin Yang and Ghulam Destgeer Technical University of Munich, GERMANY
- T109.c IMPROVING THE EFFICIENCY OF DROPLET COMPARTMENTALIZATION BY DOUBLE EMULSIONS FOR CRISPR-BASED NUCLEIC ACID DETECTION Yang Zhang and Ming Li Macquarie University, AUSTRALIA
- T110.c MICROFLUIDIC DEVICES FOR THE GENERATION OF MONODISPERSE, SUBMICROMETER, SELF-ASSEMBLED SUPERPARTICLES Tanner W. Young, Baixu Zhu, Xingchen Ye, and Stephen C. Jacobson Indiana University, USA
- T111.c ON CHIP SHEATH FLOW INDUCED MICROPARTICLE ENCAPSULATION IN SPIRAL CHANNELS

Byeong-Ui Moon¹, Lidija Malic¹, Dillon Da Fonte¹, Liviu Clime¹, Félix Lussier², Luke Lukic¹, David Juncker², and Teodor Veres¹ ¹National Research Council Canada, CANADA and ²McGill University, CANADA

W105.c AN ASYMMETRIC CROSS-JUNCTION MICROFLUIDIC DEVICE FOR SYNTHESIS OF ANISOTROPIC MAGNETIC JANUS PARTICLES IN A MICROFLUIDIC DEVICE Muhammad Saqib and Emine Yegan Erdem Bilkent University, TURKEY

W108.c FABRICATION OF SYNTHETIC POLYMER FOAMS AND GRADIENT STRUCTURES VIA MICROFLUIDICS FOR ENERGY ABSORPTION APPLICATIONS Abhishek Viswanath and Marco Costantini

Polish Academy of Sciences, POLAND

W109.c LENGTH-CODED AMPHIPHILIC PARTICLES FOR THE ENCAPSULATION OF A WIDE RANGE OF DROPLET VOLUMES Muhammad Usman Akhtar, Mehmet Akif Sahin, Helen Werner, and Ghulam Destgeer Technical University of Munich, GERMANY

PRESENTATIONS

W110.c	MONITORING PANCREATIC \propto -AMYLASE OF POSTOPERATIVE PATIENTS WITH DROPLET-BASED MICROFLUIDICS Xinne Zhao ¹ , Fiona R. Kolbinger ² , Denys Makarov ¹ , and Larysa Baraban ¹ ¹ Helmholtz-Zentrum Dresden-Rossendorf e.V., GERMANY and ² Dresden University of Technology, GERMANY THE EFFECTS OF DIFFERENTIAL IMPEDANCE SIGNAL ON
	DROPLET MEASUREMENT Xun Liu ¹ , Tao Tang ² , Yoichiroh Hosokawa ¹ , and Yaxiaer Yalikun ¹ ¹ Nara Institute of Science and Technology, JAPAN and ² National University of Singapore, SINGAPORE
	Electrokinetic Phenomena
M112.c	ELECTRO-ROTATION MEASUREMENT SYSTEM FOR AUTOMATIC HIGH-THROUGHPUT DIELECTRIC CHARACTERIZATIONS OF CELLS POPULATIONS Samuele Moscato ^{1,2} , Andrea Ballo ^{1,2} , Pasquale Memmolo ³ , Paolo Bonacci ² , Nicolò Musso ² , Stefania Stefani ² , Ron Pethig ² , Maide Bucolo ² , and Massimo Camarda ¹ ¹ STLab srl, ITALY, ² University of Catania, ITALY, and ³ CNR ISASI, ITALY
M113.c	MICROFLUIDIC CHIP FOR MULTIMODAL MANIPULATION OF PARTICLES/CELLS BASED ON WAVY FLOATING ELECTRODE Wenru Dai, Hongfang Yu, and Liang Huang Hefei University of Technology, CHINA
T112.c	EVAPORATIVE CRYSTALLIZATION OF SESSILE DROPLETS USING ELECTROWETTING Qi An ¹ , Pingping Cui ^{1,2} , Bijoy Bera ¹ , Massimo Mastrangeli ¹ , Johan T. Padding ¹ , and Burak Eral ¹ ¹ <i>TU Delft, NETHERLANDS and</i> ² <i>Tianjin University, CHINA</i>
T113.c	OSTE-BASED MICROFLUIDIC CHIP FOR PEF TREATMENT OF MAMMALIAN CELLS Neringa Bakute ¹ , Eivydas Andriukonis ¹ , Kamile Kasperaviciute ¹ , Elinga Brazionyte ¹ , Jorunas Dobilas ¹ , Vilius Vertelis ¹ , Skirmantas Kersulis ¹ , Gatis Mozolevskis ² , Arunas Stirke ^{1,2} ¹ State Research Institute Physical and Technological Sciences Center (FTMC), LITHUANIA and ² University of Latvia, LATVIA
W112.c	HIGH THROUGHPUT AND SCALABLE PRECONCENTRATION OF CHARGED ANALYTES BASED ON ION CONCENTRATION POLARIZATION ON A PACKED BED OF MICROBEADS Umesha Peramune, Zisun Ahmed, Suriya Dhakshinamoorthy, Mehdi Shadkhah, Baskar Ganapathysubramanian, and Robbyn K. Anand <i>Iowa State University, USA</i>
W113.c	STUDY OF AC ELECTROTHERMAL MICRO FLOWS TO ENHANCE BIOCHEMICAL DETECTION Léna Gonzalez ¹ , Laurent Davoust ² , and Jena-Maxime Roux ¹ ¹ CEA Leti, FRANCE and ² CNRS, FRANCE

	Modeling/Numerical Simulation
M114.c	ACCELERATING CFD SIMULATIONS OF MICROFLUIDIC DEVICES BY EXPLOITING HIGHER LEVELS OF ABSTRACTIONS Michel Takken ¹ and Robert Wille ^{1,2} ¹ Technical University of Munich, GERMANY and ² Software Comptence Center Hagenberg SCCH, AUSTRIA
M115.c	NUMERICAL CHARACTERIZATION OF COMPLIANCE OF THICK PDMS MICROCHANNELS Mohammed Elmahdi Elgack, Omar Ghannam, and Mohamed Abdelgawad <i>American University of Sharjah, UAE</i>
T114.c	EFFECT OF JUNCTION ANGLE ON PARTICLE ENCAPSULATION IN DROPLET MICROFLUIDICS Maryam Fatehifar, Alessandro De Rosis, and Alistair Revell University of Manchester, UK
T115.c	OPTIMIZATION OF MICROCHANNEL GEOMETRY FOR IMPROVING SENSITIVITY ON PARTICLE/CELL IMPEDANCE MEASUREMENT Yuanyuan Guo and Liang Huang Hefei University of Technology, CHINA
W114.c	ENHANCING MASS TRANSFER EFFICIENCY VIA INTERNAL FLUID VORTEX IN DIFFERENT HELIX CONFIGURATIONS Pin-Ru Huang ¹ , Guan-Yu Lu ¹ , Po-Yao Syu ¹ , Wei-Hsin Tien ² , Yi-Hsin Chien ³ , Wei-Hsiang Wang ¹ , and Ya-Yu Chiang ^{1,4} ¹ National Chung Hsing University, TAIWAN, ² National Taiwan University of Science and Technology, TAIWAN, ³ Feng Chia University, TAIWAN, and ⁴ National Taiwan University, TAIWAN
W115.c	THE VIBRATION-INDUCED CHAOTIC MIXING WITH SWITCHING OF VIBRATIONS AXES Kanji Kaneko ^{1,2} , Yosuke Hasegawa ³ , Takeshi Hayakawa ¹ , and Hiroaki Suzuki ¹ ¹ Chuo University, JAPAN, ² Japan Society for the Promotion of Science (JSPS), JAPAN, and ³ University of Tokyo, JAPAN
	Nanofluidics/Nanofluidic Phenomena
M116.c	CO-FLOW OF NEWTONIAN AND VISCOELASTIC FLUIDS FOR BACTERIA SEPARATION BY SIZE IN A MICROCHANNEL Tianlong Zhang ^{1,2} , Yaxiaer Yalikun ² , Yoichiroh Hosokawa ² , and Ming Li ¹ ¹ Macquarie University, AUSTRALIA and ² Nara Institute of Science and Technology, JAPAN
M117.c	NANOFLUIDIC DEVICE WITH POSITIVELY CHARGED CHANNEL SURFACES IMITATE INHIBITORY SYNAPTIC FUNCTION Peiyue Li ¹ , Pan Zhang ¹ , Han Xu ¹ , Yechang Guo ¹ , Shaofeng Wang ³ , Yufeng Jin ¹ , and Wei Wang ^{1,2} ¹ Peking University, CHINA, ² National Key Laboratory of Science

¹Peking University, CHINA, ²National Key Laboratory of Science and Technology on Micro/Nano Fabrication, CHINA, and ³China University of Geosciences, CHINA

M118.C ON-DEMAND 3D NANOCONFINEMENT IN BEAD-ARRAY MICROFLUIDIC CHIPS VIA CONTROLLABLE PDMS COLLAPSE FOR EFFICIENT BIOREACTION

Jui-Hong Weng¹, Deng-Kai Yang¹, Abdullah-Bin Siddique², Nathan Swami², and Chia-Fu Chou¹ ¹Academia Sinica, TAIWAN and ²University of Virginia, USA

T116.c ENHANCED DNA MIXING WITH VISCOELASTIC WAVES Enrico Turato, Jason P. Beech, and Jonas O. Tegenfeldt Lund University, SWEDEN

T117.c NANOFLUIDIC ELECTROKINETIC TRANSPORT ACROSS MULTIPLE NANOCHANNELS MONITORED IN REAL TIME

Nattapong Chantipmanee¹, Taichi Nakajima², Sasikarn Seetasang^{2,3}, and Yan Xu^{1,2,4}

¹Osaka Metropolitan University, JAPAN, ²Osaka Prefecture University, JAPAN, ³National Nanotechnology Center (NANOTEC), THAILAND, and ⁴Japan Science and Technology Agency (JST), JAPAN

T118.c THE EFFECT OF CONFINEMENT ON FLOW GENERATION BY ARTIFICIAL CILIA

Yiqing Sun, Ye Wang, and Jaap den Toonder Eindhoven University of Technology, NETHERLANDS

W116.c GATE-CONTROLLED NANOFLUIDIC MEMORY DEVICES MIMIC EXCITATORY SYNAPTIC AND INHIBITORY SYNAPTIC FUNCTIONS Pan Zhang¹, Peiyue Li¹, Han Xu¹, Yechang Guo¹, Shaofeng Wang³, Yufeng Jin¹, and Wei Wang^{1,2} ¹Peking University, CHINA, ²National Key Laboratory of Science and

Technology on Micro/Nano Fabrication, CHINA, and ³China University of Geosciences, CHINA

W117.c NANOFLUIDIC EVALUATION OF INDIVIDUAL NANOGEL-BASED MOLECULAR SYSTEMS

Yusuke Dote¹, Xuejin Huang², Madoka Takai², Nattapong Chantipmanee¹, and Yan Xu¹ ¹*Osaka Metropolitan University, JAPAN and* ²*Tokyo University, JAPAN*

W118.c WETTABILITY INSPIRED MODIFICATION OF MEMBRANES FOR IMPROVED DESALINATION Vinay Arya and Chirodeep Bakli

Indian institute of Technology, Kharagpur, INDIA

Others

POSTER RESENTATION

T119.C LONG-TERM OPERATION OF SPRING-BASED SYRINGE PUMP THROUGH THE SEQUENTIAL OPERATION OF THE CLOCKWORK MECHANISM

Won Han, Se Been Park, and Joong Ho Shin Pukyong National University, KOREA

W119.c ROOM TEMPERATURE QUANTITATIVE LIQUID CONCENTRATION INTERFACE

Hidekatsu Tazawa¹ and Kazuma Mawatari² ¹University of Tokyo, JAPAN and ²Waseda University, JAPAN

POSTER PRESENTATIONS

POSTER PRESENTATIONS

	d - Integrated Microfluidic Platforms
	Chemical & Particle Synthesis
M120.d	A DROPLET MICROFLUIDIC DEVICE FOR RAPID IN-SITU POLYMERIZATION OF SUPERABSORBENT POLYMER MICROPARTICLES (SAP-MPS) Ehsan Tabesh, John Brown, Alireza Zabihihesari, Siu Ning (Sunny) Leung, and Pouya Rezai York University, CAWADA
M121.d	RAIL-AIDED LATERAL PARTICLE TRANSPORT ACROSS INTACT CO-FLOWS: EFFECT OF WALLS AND RAIL GEOMETRY Vyacheslav R. Misko, Iwona Ziemecka, Amaury de Hemptinne, Matthieu Briet, Pierre Gelin, Ilyesse Bihi, Dominique Maes, and Wim De Malsche Vrije Universiteit Brussel (VUB), BELGIUM
T120.d	A NOVEL MICROFLUIDIC REACTOR ARCHITECTURE FOR RAPID DNA SYNTHESIS Naghmeh Fatemi, Ahmed Taher, Jelle Fondu, Hamideh Jafarpoorchekab, Kherim Willems, Olivier Henry, Peter Peumans, Tim Stakenborg, and Ben Jones <i>imec, BELGIUM</i>
T121.d	TUNABLE SYNTHESIS OF BRANCHED GOLD NANOPARTICLES IN MICROFLUIDIC DEVICE FOR LARGE BIOMOLECULAR DELIVERY Kavitha Illath ¹ , Hima Manoj ¹ , Ashwini Shinde ¹ , Moeto Nagai ² , and Tuhin S. Santra ¹ ¹ Indian Institute of Technology, Madras, INDIA and ² Toyohashi University of Technology, JAPAN
W120.d	RAIL INDUCED PARTICLE MULTILAYER COATING Amaury A. de Hemptinne, Iwona I. Ziemecka, Vyacheslav R.V.R. Misko, Matthieu M. Briet, Pierre P. Gelin, Ilyesse I. Bihi, Dominique D. Maes, and Wim W. De Malsche <i>Vrije Universiteit Brussel (VUB), BELGIUM</i>
W121.d	ULTRA-HIGH THROUGHPUT MICROFLUIDIC PHOTOCATALYTIC SYNTHESIS AND SCREENING UP TO 10,000 REACTIONS PER DAY Jia-Min Lu Zhejiang University, CHINA
	Eletrophoretic & Chromatographic Separation
M122.d	ELECTROPHORETIC QUALITY ASSESSMENT OF ADENO-ASSOCIATED VIRUS (AAV) BY MICROFLUIDIC ION CONCENTRATION POLARIZATION Yejin Park ^{1,2} , Mingyang Cui ² , Jinsik Kim ¹ , and Jongyoon Han ² ¹ Dongguk University, KOREA and ² Massachusetts Institute of Technology, USA
M123.d	HIGH-THROUGHPUT ELECTROKINETIC FILTER FOR CHO MEDIA REGENERATION Eric M. Wynne, Dohyun Park, Mingyang Cui, and Jongyoon Han Massachusetts Institute of Technology, USA
	88

TER

F

POSTER PRESENTATIONS

20	PRESENTATIONS
T122.d	EXPLORING THE POTENTIAL OF VORTEX LIQUID CHROMATOGRAPHY Pierre Gelin ¹ , Ilyesse Bihi ¹ , Levi Ezechukwu ¹ , Elahe Naghdi ¹ , Eiko Westerbeek ^{1,2} , Wouter Olthuis ² , Jan Eijkel ² , and Wim De Malsche ¹ ¹ <i>Vrije Universiteit Brussel (VUB), BELGIUM and</i> ² <i>Twente University, NETHERLANDS</i>
T123.d	MINIATURIZED EXTRACTION DEVICE COUPLED TO MASS SPECTROMETRY FOR ON-LINE PURIFICATION AND CHARACTERIZATION OF NUCLEAR SAMPLES Marine Boudias ¹ , Erwan Dupuis ¹ , Alexandre Quémet ² , and Carole Bresson ¹
T124.d	POINT-OF-CARE TESTING (POCT) OF THALASSEMIA ON ISOELECTRIC FOCUSING (IEF) CHIP/PLATFORM Kay Khine Maw, Wei Wang, and Zhiping Wang Agency for Science, Technology and Research (A*STAR), SINGAPORE
W122.d	FEMI-GC: A MICRO GAS CHROMATOGRAPHY SYSTEM WITH FLUIDIC AND ELECTRICAL MODULAR INTERFACING Nipun Thamatam, Mustahsin Chowdhury, and Masoud Agah Virginia Polytechnic and State University, USA
W123.d	NANOSPRAY EMITTERS: MICROFABRICATED ELECTROSPRAY INTERFACES (ESI) WITH A LIQUID JUNCTION FOR SENSITIVE BIONANALYSES Elizaveta Vereshchagina ¹ , Tomáš Václavek ² , Anand Summanwar ¹ , Sigurd Moe ¹ , Leny Nazareno ¹ , Aina K. Herbjørnrød ¹ , Guido Sordo ¹ , Anna Nordborg ³ , Andreas Vogl ¹ , Franta Foret ² , and Roman Řemínek ² ¹ SINTEF Digital, NORWAY, ² Czech Academy of Sciences, CZECH REPUBLIC, and ³ SINTEF Industry, NORWAY
	Micromixers & Microreactors
M125.d	CHARACTERIZATION OF A MICROFLUIDIC MIXING PROBE (MMP) Dima S. Ali, Ayoub Glia, Muhammedin Deliorman, and Mohammad Qasaimeh New York University, Abu Dhabi, USA
M126.d	HYDRODYNAMIC ENHANCEMENT OF AGGLUTINATION-BASED NANOPARTICLE DETECTION DRIVEN BY THE VIBRATION-INDUCED FLOW Kanji Kaneko ^{1,2} , Mamiko Tsugane ¹ , Yosuke Hasegawa ³ , Takeshi Hayakawa ¹ , and Hiroaki Suzuki ¹ ¹ Chuo University, JAPAN, ² Japan Society for the Promotion of Science (JSPS), JAPAN, and ³ University of Tokyo, JAPAN
M127.d	MICROFLUIDIC-ASSISTED DIGITAL MANUFACTURING OF FUNCTIONALLY GRADED POROUS MATERIALS WITH TRANSIENT PHYSICAL AND BIOLOGICAL PROPERTIES Maria Celeste Tirelli ¹ , Francesco Nalin ¹ , Nehar Celikkin ¹ , Andrea Curatolo ² , Piotr Kasprzycki ² , Karol Karnowski ² , and Marco Costantini ¹ ¹ Polish Academy of Sciences, POLAND and ² International Center for Translational Eye Research, POLAND

M128.d SIMULATIONS AND ANALYSIS OF PROGRAMMABLE LIQUID METAL DROPLET ARRAY PLATFORM FOR GENERATING RECONFIGURABLE FLOW FIELD

Xu Gao, Shitao Shen, and Wei Wang Peking University, CHINA

T125.d DEVELOPMENT OF MICROWAVE MICROFLUIDICS WITH PARALLEL HEATING USING POST-WALL WAVEGUIDE FOR COMBINATORIAL SYNTHESIS

Kaito Fujitani¹, Hiroshi Nakamura¹, Akinobu Yamaguchi¹, Mitsuyoshi Kishihara², and Yuichi Utsumi¹ ¹*University of Hyogo, JAPAN and*²*Okayama Prefectural University, JAPAN*

T126.d MICROBIAL STIR BARS: LIGHT-ACTIVATED ROTATION OF TETHERED BACTERIAL CELLS TO ENHANCE MIXING IN STAGNANT FLUIDS

Jyoti P. Gurung¹, Moein N. Kashani^{2,3}, Charitha M.D.E. Silva¹, and Matthew A.B. Baker^{1,4}

¹University of New South Wales, AUSTRALIA, ²University of South Australia, AUSTRALIA, ³Australian National Fabrication Facility, AUSTRALIA, and ⁴ARC centre of Excellence in Synthetic Biology, AUSTRALIA

T127.d PNEUMATIC VALVE-BASED MICROFLUIDIC DEVICE FOR THE DETECTION OF HEPO GENE

Hyewon Yun and Chang-Soo Lee Chungnam National University, KOREA

W124.d AN INTEGRATED, AUTOMATED MICROFLUIDIC INSTRUMENT FOR COMPLEX BIOLOGICAL MICROREACTIONS Greg Liddiard, Bahar Kazemi, Munawar Jawad, Chris Lambert, Sabin Nepal, and Bruce Gale University of Utah, USA

W125.d ELECTRO-GUIDED MICRO-VESSELS WITH DUAL MOTION Annaël Sort-Montenegro, Luke Dowling, Colm Delaney, and Larisa Florea Trinity College Dublin, IRELAND

W126.d MICROFLUIDIC ULTRAFAST MIXER FOR CONTINUOUS AND SCALABLE PRODUCTION OF DRUG DELIVERY NANOPARTICLES Dong-Pyo Kim, Gi-Su Na, Jeong-Un Joo, and Byung Kwon Kaang Pohang University of Science and Technology (POSTECH), KOREA

W127.d POLYDIMETHYLSILOXANE-FREE MICROFLUIDIC TECHNOLOGY FOR THE RAPID CAPTURE OF EXTRACELLULAR VESICLES FROM URINE Janis Cipa^{1,2}, Edgars Endzelins², Roberts Rimsa¹, Arturs Abols^{1,2}, Aija Line², and Gatis Mozolevskis¹ ¹ Cellboxlab Ltd, LATVIA and²University of Latvia, LATVIA

Mimicking Acutators (Muscles, Nanorobots)

M129.d MULTI-POLAR ELECTRODE DEVICE FOR SELECTIVE STIMULATION OF THREE-DIMENSIONAL CULTURED SKELETAL MUSCLE TISSUE Hirone Yamada¹, Yuya Morimoto², Byeongwook Jo¹, Minghao Nie¹, and Shoji Takeuchi¹ ¹University of Tokyo, JAPAN and²Waseda University, JAPAN

uT Ze	AS POSTER PRESENTATIONS
T128.d	A MICROFLUIDIC DOCKING ASSEMBLED ROTATIONAL ACTUATOR DRIVEN BY BIOMOLECULAR MOTORS Masakiyo Takahashi', Yingzhe Wang ¹ , Takahiro Nitta ² , Yuichi Hiratsuka ³ , and Keisuke Morishima ¹ ¹ Osaka University, JAPAN, ² Gifu University, JAPAN, and ³ Japan Advanced Institute of Science and Technology (JAIST), JAPAN
W128.d	MICROFLUIDIC SOFT ROBOTS BASED ON TEXTILE TECHNOLOGIES FOR ENDOSCOPY AND MICROMANIPULATION Vivian Aubert ¹ , Anissa Kaddouche ¹ , Clara Brouaux ¹ , Raphael Leurond ¹ , Chloé Visbecq ² , Quentin Watel ² , Aurelie Cayla ² , Fabien Salaün ² , Francois Boussu ² , and Jean-Louis Viovy ¹
	Particle Separation
M130.d	DESIGN OF A MICROFLUIDIC DEVICE FOR MICROPARTICLE COLLECTION THROUGH ELECTROSTATIC ATTRACTION AND REPULSION Yuki Ito, Kota Suzuki, Keiichiro Yoshida, and Sho Yokoyama Osaka Institute of Technology, JAPAN
M131.d	ECHOGRID: A NOVEL ACOUSTOFLUIDIC, HIGH-THROUGHPUT PLATFORM FOR ENVIRONMENTAL MICROPLASTIC ENRICHMENT Martim Costa, Liesbeth van der Geer, Björn Hammarström, Selim Tanriverdi, Håkan Jönsson, Martin Wiklund, and Aman Russom KTH Royal Institute of Technology, SWEDEN
M132.d	MICROFLUIDIC DEVICE WITH 3D SELF-ASSEMBLED LIQUID METAL ELECTRODES FOR DIELECTROPHORETIC FRACTIONATION OF LARGE-SIZE-RANGE PARTICLES

Huichao Chai, Junwen Zhu, Yongxiang Feng, and Wenhui Wang Tsinghua University. CHINA

M133.d SIZE-BASED SEPARATION OF MULTI-TARGET USING AN ALL GLASS MICROFLUIDIC DEVICE WITH DEFORMABLE CHANNEL Doudou Ma^{1,2,3}, Yalikun Yaxiaer^{2,3}, Nobutoshi Ota², Yuri Ito², and Koki Yamamoto² ¹Oaka University, JAPAN, ²Center for Biosystems Dynamics Research, JAPAN, and ³Nara Institute of Science and Technology, JAPAN

T129.d AUTOMATED DROPLETS SCREENING SYSTEM USING A MICROFLUIDIC DEVICE INTEGRATING PNEUMATIC MICROVALVES

Jo Han He, Yi Ting Hsiau, Jing Tang Yang, and Suz I Yeh National Cheng Kung University, TAIWAN

- T130.d DEVELOPMENT OF HIGH-THROUGHPUT CIRCULATING TUMOR CELLS SEPARATION DEVICE BASED ON 3D HYDRODYNAMIC FILTRATION Taiga Ajiri, Hiroyuki Obinata, Natsuki Maeda, and Kentaro Shirai Sysmex Corporation, JAPAN
- T131.d HIGH-THROUGHPUT FLUORESCENCE-ACTIVATED SINGLE EXTRACELLULAR VESICLE SORTER

Yoshiyuki Tsuyama¹, Kenji Hinode², Yusuke Yoshioka¹, and Sadao Ota² ¹*Tokyo Medical University, JAPAN and* ²*University of Tokyo, JAPAN*

PRESSURE-DEPENDENT SORTING OF GROUP A STREPTOCOCCUS BY T132.d DETERMINISTIC LATERAL DISPLACEMENT: AN EXAMPLE OF SORTING A HETEROGENOUS SAMPLE BY A PASSIVE MICROFLUIDIC METHOD Elham Akbari, Sebastian Wrighton, Jason P. Beech, Pontus Nordenfelt, and Jonas O. Tegenfeldt Lund University, SWEDEN **CAPILLARITY ENABLED LARGE-ARRAY 3D LIQUID METAL** W129.d ELECTRODES FOR COMPACT DIELECTROPHORETIC MICROFLUIDICS Huichao Chai, Yongxiang Feng, Junwen Zhu, and Wenhui Wang Tsinghua University, CHINA W130.d DEVELOPMENT OF PARTICLE SEPARATION AND CONCENTRATION MICROFLUIDIC DEVICE FOR DIAGNOSIS OF PERITONEAL DIALYSIS PERITONITIS Ye Sung Lee, Sung Hoon Bae, Alexander Zhbanov, and Sung Yang Gwangju Institute of Science and Technology (GIST), KOREA W131.d MICRO/NANOPARTICLE SEPARATION VIA RADIAL TEMPERATURE GRADIENT IN THREE-DIMENSIONAL SPIRAL MICROCHANNELS Junho Kim, Kyunghoon Lee, and Taesung Kim Ulsan National Institute of Science and Technology (UNIST), KOREA W132.d SEPARATION OF TWO BACTERIAL SPECIES USING VISCOELASTIC FLOWS Tianlong Zhang^{1,2}, Li Ming¹, Yaxiaer Yalikun², and Yoichiroh Hosokawa² ¹Macquarie University, AUSTRALIA and ²Nara Institute of Science and Technology, JAPAN Others M134.d CONTINUOUS BIODIESEL PRODUCTION PROCESS AND SYSTEM OPTIMIZATION Pin-Ru Huang¹, Cheng-Yu Wang¹, Hsiang-Yu Yang¹, Bo-Chuan Hsueh¹, Faisal Magbool¹, Yu-Chieh Chen^{1,3}, Yi-Hsin Chien², and Ya-Yu Chiang^{1,3} ¹National Chung Hsing University, TAIWAN, ²Feng Chia University, TAIWAN, and ³National Taiwan University, TAIWAN M135.d MICROFLUIDIC PRODUCTION OF [18F]ALF-PSMA-11 RADIOPHARMACEUTICAL Olga Ovdiichuk¹, Laurent Tanguy², and Charlotte Collet^{1,3} ¹Nancvclotep, FRANCE, ²PMB-Alcen, FRANCE, and ³Université de Lorraine, FRANCE CHARACTERIZING ACOUSTIC BEHAVIOR OF SILICON T133.d

PRESENTATION

MICROCHANNELS SEPARATED BY POROUS WALLS Mehrnaz Hashemiesfahan^{1,2}, Pierre Gelin¹, Jo W. Christiaens¹,

Han Gardeniers², and Wim De Malsche¹ ¹ Vrije Universiteit Brussel (VUB), BELGIUM and ² University of Twente, NETHERLANDS

T134.d IN-SITU ENZYMATIC ACTIVITY MONITORING PLATFORM USING FOIL-BASED DISPOSABLE MICROFLUIDIC CHIPS

Alvaro J. Conde¹, Veronica Mora Sanz², Elisabeth Hengge³, Jihye Jung³, Bernd Nidetzky³, Matija Strbac², Nerea Briz Iceta², Andoni Rodriguez⁴, Pakapreud Khumwan⁵, Conor O'Sullivan⁶, Nastasia Okulova⁶, and Maciej Skolimowski¹

¹ Micronit BV, NETHERLANDS, ² Tecnalia-BRTA, SPAIN, ³Graz University of Technology, AUSTRIA, ⁴Bionic Surface Technologies GmbH, AUSTRIA, ⁵ Joanneum Research, AUSTRIA, and ⁶Inmold AS, DENMARK

W133.d COAXIAL DUAL-ION SOURCE UTILIZING CHIP-BASED MICRO RF PLASMA AND ELECTROSPRAY IONIZATIONS FOR MASS SPECTROMETRY DETECTING OF ALL-POLARITIES SAMPLES Yi Chi Liu and Che Hsin Lin

National Sun Yat-sen University, TAIWAN

W134.d INDEPENDENT UNIT OPERATION OF SERIALLY AND PARALLELLY INTERCONNECTED MULTIPLE MICROFLUIDIC DEVICES USING CLAPMED PRESSURES

Kao-Mai Shen¹, Chihchen Chen¹, Kyojiro Morikawa^{1,2,3}, and Takehiko Kitamori^{1,2,3,4}

¹National Tsing Hua University, TAIWAN, ²University of Tokyo, JAPAN, ³Kanagawa Institute of Industrial Science and Technology, JAPAN, and ⁴Lund University, SWEDEN

e - Micro- and Nanoengineering

Bonding, Sealing & Interfacing Technologies

M136.e IRREVERSIBLE PDMS BONDING USING FLAME ACTIVATION OF ADHESIVES FOR FABRICATION OF ORGAN-ON-CHIP DEVICES Mohammadhossein Dabaghi, Ryan Singer, and Jeremy Hirota *McMaster University, CANADA*

T135.e CLEAN-ROOM FREE FABRICATION OF HYBRID GLASS CHIP FOR PRECISE OXYGEN CONTROL

Charlotte Bouquerel^{1,2}, Simon Dumas¹, Elias Abedelnour³, Ester Simkova¹, Guillem Wetherell Mateu¹, Linda Meddahi¹, Bertrand Cinquin⁴, Giacomo Gropplero¹, Michael Tatoulian³, Maria Carla Parrini¹, William Cesar², and Stephanie Descroix¹ ¹Institut Curie, FRANCE, ²Fluigent, FRANCE, ³PSL University, FRANCE, and ⁴Institut Pierre Gilles de Gennes, FRANCE

T136.e SEMI-AUTOMATED FABRICATION METHOD OF A HYDROGEL-BASED MICROFLUIDIC CHIP FOR CELL CULTURE

Pouya Mehrdel, Christophe Vedrine, and Gabriele Pitingolo *Biaoster, FRANCE*

W135.e INTEGRATION OF GAAS-BASED LATERAL FIELD EXCITATION (LFE) SENSOR WITH PDMS MICROFLUIDIC CHANNEL: SIMULATION AND EXPERIMENTAL VALIDATION

Muhammad Hamidullah, Franck Chollet, and Thérèse Leblois University Bourgogne Franche-Comté, FRANCE

W136.e	THE STUDY OF IRREVERSIBLE INTEGRATION OF POROUS PLASTIC MEMBRANES IN A POLY(DIMETHYLSILOXANE) MICROFLUIDIC SYSTEM FOR 3D CELL CULTURE Magdalena Flont, Krzysztof Mrozik, and Elżbieta Jastrzębska Warsaw University of Technology, POLAND
	Micropumps, Valves and Dispensers
M137.e	A FULLY AUTOMATED PORTABLE PERFUSION SYSTEM FOR LIQUID DOSING, CELL INCUBATION AND MONITORING Katarzyna Tokarska, Kamil Zukowski, and Zbigniew Brzózka Warsaw University of Technology, POLAND
M138.e	CHARACTERIZATION OF THE FLOW PROFILE IN PUSHBUTTON- ACTIVATED MICROFLUIDIC DEVICES Dong Hyun Han, Gihyun Lee, Untaek Oh, and Je-kyun Park Korea Advanced Institute of Science and Technology (KAIST), KOREA
M139.e	HIGH-RIGIDITY ON-CHIP MEMBRANE PUMP FOR HIGH-SPEED PICOLITRE PIPETTE Nariaki Kiyama ¹ , Makoto Saito ¹ , Yoshitaka Shirasaki ² , Yoko Yamanishi ¹ , and Shinya Sakuma ¹ ¹ Kyushu University, JAPAN and ² University of Tokyo, JAPAN
M140.e	NUMERICAL SIMULATIONS OF POLYDIMETHYLSILOXANE (PDMS) PUMPS FOR MICROFLUIDICS APPLICATIONS Pablo E. Guevara-Pantoja, Fernando Benito-Lopez, and Lourdes Basabe-Desmonts University of the Basque Country, SPAIN
Т137.е	A LOW-COST MICROFLUIDIC SENSOR WITH GLASSY CARBON/GRAPHENE ELECTRODES AND A VALVELESS MICROPUMP FOR HIGHLY SENSITIVE DETECTION OF HEAVY METAL IONS Peng Zhou, Yingming Xu, Terrence Simon, and Tianhong Cui University of Minnesota, USA
T138.e	DUAL MAGNET SOLENOID ACTUATOR FOR PORTABLE MICROFLUIDIC APPLICATIONS Seo Jun Bae and Do Jin Im Pukyong National University, KOREA
T139.e	METACHRONAL MOTION OF MINIATURIZED MAGNETIC ARTIFICIAL CILIA GENERATES MICROFLUIDIC FLOW Zhiwei Cui, Ye Wang, and Jaap den Toonder Eindhoven University of Technology, NETHERLANDS
T140.e	PHOTOACTIVE MICROFLUIDIC PUMPS - BY SPLAY ALIGNED LIQUID CRYSTAL NETWORK ACTUATORS Christina A. Schmidleithner ¹ , Yuxin You ² , Dirk J. Broer ² , and Johannes R. Peham ¹ ¹ AIT Austrian Institute of Technology, AUSTRIA and ² Technical University of Eindhoven, NETHERLANDS
W137.e	A PORTABLE SPRING-POWERED 3D-PRINTED WIND-UP SYRINGE PUMP FOR MICROFLUIDIC APPLICATIONS Se Been Park and Joong Ho Shin Pukyong National University, KOREA

W138.e FABRICATION OF AN AUTOMATED, NON-ELECTRIC SYRINGE PUMP THAT PUMPS LIQUIDS SEQUENTIALLY USING A SPIRAL SPRING FOR IMMUNOASSAY

Minseon Kim and Joong Ho Shin Pukyung National University, KOREA

W139.e MICROSCALE IN-TUBE CHECK-VALVE Edwin En-Te Hwu¹, Dali Reda¹, Bilge G. Kyuchuk¹, Tien-Jen Chang¹, Nikolaj Gadegaard², and Anja Boisen¹ ¹ Technical University of Denmark, DENMARK and ² University of Glasgow, UK

Microscale Fabrication, Patterning and Integration

- M141.e 3-D PRINTED MICRO-OPTOFLUIDIC CHAMBER FOR CELL POPULATION CHARACTERIZATION AND VELOCITY DETECTION Emanuela Cutuli, Giovanna Stella, Dario Sanalitro, Lorena Saitta, Francesca Guarino, Gianluca Cicala, and Maide Bucolo University of Catania, ITALY
- M142.e ACOUSTICALLY LEVITATED STRUCTURAL COLOR VOXELS WITH VARIED ULTRASOUND SENSITIVITY FOR AERIAL DISPLAYS Hayato Goto, Satoshi Nishita, and Hiroaki Onoe Keio University, JAPAN
- M143.e COST-EFFECTIVE LITHO-FREE TECHNIQUE FOR HIGH THROUGHPUT SINGLE CELL TRAPPING AND BIOPRINTING USING WETTABILITY CONTRAST AND SUPERHYDROPHOBIC COPPER SURFACES Khuushi¹, Sanna Showkat², and Prosenjit Sen¹ ¹ Indian Institute of Science, INDIA and ² National Institute of Techology, Srinagar, INDIA
- M144.e ENGINEERING SUB-10 MICRON CAPILLARY-SCALE MICROVASCULATURE MODELS IN HYDROGEL Shusei Kawara¹, Brian Cunningham^{1,2}, James Bezer¹, Neelima Kc¹, Jun Ishihara¹, James J. Choi¹, and Sam H. Au^{1,2} ¹Imperial College London, UK and ²Cancer Research UK Convergence Science Centre, UK
- M145.e FABRICATION OF PERIODIC SURFACE STRUCTURE ON NANO-ENABLED GRAPHENE OVER KAPTON POLYAMIDE MEMBRANES USING FEMTOSECOND LASER Suman Chatterjee, Abhijit Cholkar, David Kinahan, and Dermot Brabazon Dublin City University, IRELAND

M146.e FUNCTIONNALITIES INTEGRATION IN 3D-PRINTED MICROFLUIDICS USING A "PRINT-PAUSE-PRINT" STRATEGY Bastien Venzac¹, Laurent Malaquin¹, Vincent Raimbault¹, Corentin Tregouet³, Elise Bou^{1,2}, Timothée Derkenne³, and Matthieu Sagot^{1,2} ¹LAAS - CNRS, FRANCE, ²Smartcatch, FRANCE, and ³ESPCI Paris, FRANCE

M147.e IMPROVED SINGLE-SHOT THREE-DIMENSIONAL PRINTING METHOD BY EXPLOITING STEREOGRAPHIC OPTICAL PROXIMITY CORRECTION IN GRAYSCALE LITHOGRAPHY Jinsik Yoon and Wook Park

Kyung Hee University, KOREA

M148.e MICROLFUIDICS FOR HOBBYISTS

Ladislav Derzsi, Yurii Promovych, Shreyas Vasantham, and Piotr Garstecki *Polish Academy of Sciences, POLAND*

M149.e DESIGN AND DEVELOPMENT OF INTRICATE MICRO-CHANNELS TO IMPROVE MICROFLUIDIC HEAT-SINK PERFORMANCE Pramod Vishwakarma, Win-Jet Luo, and Bivas Panigrahi National Chin-Yi University of Technology, TAIWAN

M150.e POROUS MEMBRANE-ASSISTED MAGNETIC BEADS METHOD FOR COMPETITIVE IMMUNODETECTION OF VANCOMYCIN Shaofeng Wang^{1,2}, Yechang Guo¹, Yi Zhang¹, Qingmei Xu¹, Songtao Dou¹,

Jiajie Kang², and Wei Wang^{1,3}

¹Peking University, CHINA, ²China University of Geosciences, CHINA, and ³National Key Laboratory of Science and Technology on Micro/Nano Fabrication, CHINA

M151.e SPHEROID FORMATION IN PDMS MICROFLUIDIC DEVICES FABRICATED FROM 3-D PRINTED MOLDS WITH STEEL BALL ARRAYS

Ziya Isiksacan^{1,2}, Rahime Senturk^{1,2,3}, Ismail Bilican⁴, Aslihan Gokaltun^{1,2,5}, and O. Berk Usta^{1,2} ¹Massachusetts General Hospital and Harvard Medical School, USA, ²Shriners Children's Boston, USA, ³Eindhoven University of Technology, NETHERLANDS, ⁴Aksaray University, TURKEY, and ⁵Hacettepe University, TURKEY

- M152.e UTILIZATION OF POLY (LACTIC-CO-GLYCOLIC) ACID FOR ON-CHIP REAGENT ENCAPSULATION IN DISPOSABLE THERMOPLASTIC CHIPS Jaesung Lee, Evan Benke, Ian M. White, and Don L. DeVoe University of Maryland, USA
- T141.e 4D PRINTING OF SEQUENTIAL-CURING SYSTEM FOR FABRICATION OF MICROFLUIDIC DEVICES FOR BIOASSAYS David Böcherer, Yuanyuan Li, Bastian E. Rapp, and Dorothea Helmer University of Freiburg, GERMANY

T142.e AN OPEN-SOURCE MICROFLUIDIC DESIGN AUTOMATION WORKFLOW FOR 3D PRINTING Brady Goenner¹, Scott Temple¹, Sebastian Zapata², Pierre Emmanuel-Gaillardon¹, Gregory Nordin², and Bruce K. Gale¹ ¹University of Utah, USA and ²Brigham Young University, USA

- T143.e DIRECT WRITING TECHNIQUE FOR COMBINATORIAL SCREENING OF SOLUTION-PROCESSABLE MULTI-MATERIAL FILMS AND COATINGS Anindya L. Roy and Konrad Walus University of British Columbia, CANADA
- T144.e ENHANCEMENT OF IMPEDANCE CYTOMETRY SIGNAL WITH DIMENSION-ADJUSTABLE MICROFLUIDIC CHANNEL Trisna Julian¹, Tao Tang², Yoichiroh Hosokawa¹, and Yaxiaer Yalikun¹ ¹Nara Institute of Science and Technology, JAPAN and ²National University of Singapore, SINGAPORE

PRESENTATIONS

PRESENTATIONS

T145.e	FABRICATION OF VILLI MICROINTESTINAL STRUCTURES FOR EVALUATION OF INTESTINAL MICROBIOTA Yota Yamakawa ¹ , Wataru Iwasaki ² , and Noritada Kaji ¹ ¹ Kyushu University, JAPAN and ² National Institute of Advanced Industrial Science and Technology (AIST), JAPAN
T146.e	HIGH-RESOLUTION SURFACE REPLICATION OF LIVING ORGANISMS USING AIR-THROUGH-PRECURSOR SUCTION-AUGMENTED REPLICA MOLDING Seok Joon Mun, Wookyoung Jang, Ji Yeon Eom, Hyeon Ung Kim, and Ki Wan Bong Korea University, KOREA
T147.e	IN-SITU SYNTHESIS AND FLUID FLOW CHARACTERIZATION OF VERTICAL CELL IMPRINTED POLYMER (CIP) BASED MEMBRANES IN MICROCHANNELS FOR FUTURE ELECTROCHEMICAL SENSING APPLICATIONS Ayobami E. Oseyemi ¹ , Alireza Zabihihesari ¹ , Garrett Kraft ² , and Pouya Rezai ¹ ¹ York University, CANADA and ² Sixth Wave Innovations Inc., CANADA
T148.e	MICROPATTERNED CYCLIC OLEFIN COPOLYMER FOILS FOR ENHANCED CELL GROWTH IN MICROFLUIDICS Jiří Smejkal ¹ , Petr Aubrecht ¹ , Petr Malinský ² , Marcel Štofik ¹ , and Jan Malý ¹ ¹ Jan Evangelista Purkyně University in Ústí nad Labem, CZECH REPUBLIC and ² Academy of Sciences of the Czech Republic, CZECH REPUBLIC
T149.e	PARALLEL HIGH-THROUGHPUT SINGLE-CELL PRINTING PLATFORM FOR OPTOPORATION MEDIATED LARGE CARGO DELIVERY Gayathri Rajeswari ¹ , Pallavi Gupta ² , Moeto Nagai ³ , Pallab Sinha Mahapatra ¹ , and Tuhin Subhra Santra ¹ ¹ Indian Institute of Technology, Madras, INDIA, ² CSIR-Central Drug Research Institute (CDRI), INDIA, and ³ Toyohashi University of Technology, JAPAN
T150.e	RAPID, LOW-COST FABRICATION OF VALVED ELECTRONIC MICROFLUIDICS VIA INKJET-PRINTING AND XUROGRPAHY (MINX) Kruthika Kikkeri and Joel Voldman
T151.e	Massachusetts Institute of Technology, USA STOPPING INERTIAL FLOW WITHIN A MICROFLUIDIC CHANNEL Mehmet Akif Sahin, Muhammad Usman Akhtar, and Ghulam Destgeer Technical University of Munich, GERMANY
W140.e	"AGC-ACE" PROCESS, HIGH-PRECISION AND HIGH-SPEED DEEP MICROFABRICATION TECHNIQUE OF SILICA GLASS USING HYDROGEN FLUORIDE GAS AND CATALYST Yoshitaka Ono ^{1,2} , Kohei Sano ¹ , and Yasuo Hayashi ¹ ¹ AGC Inc., JAPAN and ² Tokyo University of Science, JAPAN
W141.e	A NOVEL METHOD OF CLEANING SLA 3D PRINTED MICROFLUIDIC DEVICES THROUGH CENTRIFUGATION Kim Nicolau, Vipul Gupta, Fernando Maya Alejandro, and Michael C. Breadmore University of Tasmania, AUSTRALIA

W142.e	APPLICATION OF BIOLOGICAL ADHESION MECHANISM TOWARD FLUIDIC SELF-ASSEMBLY Akira Ito and Hiroaki Suzuki <i>Chuo University, JAPAN</i>
W143.e	ELECTROHYDRODYNAMIC JET ASSISTED RAPID PROTOTYPING OF NON-SACRIFICIAL MICROFLUIDIC TEMPLATES: APPLICATION TO SOFT LITHOGRAPHY AND HOT EMBOSSING Anupam Choubey and Supreet Singh Bahga Indian Institute of Technology, Delhi, INDIA
W144.e	FABRICATION OF BIOMIMETIC AND FLAT COLLAGEN SCAFFOLDS CONTAINING EMBEDDEDMICROCHANNELS INSIDE 3D EXTRACELLULAR MATRICES WITH 2D BASEMENT MEMBRANE LININGS Ali Maghzian, Neda Fakhri, Arezoo Khalili, Terry Sachlos, and Pouya Rezai York University, CANADA
W145.e	FACILE FABRICATION OF HIERARCHICALLY STRUCTURED SUPERHYDROPHOBIC GLASS SUBSTRATES Kathryn Pacheco ^{1,2} and Don DeVoe ^{1,2} ¹ University of Maryland, USA and ² Fischell Institute for Biomedical Devices, USA
W146.e	HYBRID PLASMONIC NANOCAVITY MICROCHIP FOR SINGLE EV SERS MOLECULAR PROFILING Mahsa Jalali, Carolina del Real Mata, Yao Lu, Laura Montermini, Janusz Rak, and Sara Mahshid McGill University, CANADA
W147.e	MICROCHANNEL FABRICATION WITH SMOOTH SURFACE AND HIGH ETCHING SELECTIVITY ON GLASS SUBSTRATE Kyojiro Morikawa ^{1,2,3} , Po-yin Chen ¹ , Hai Linh Tran ¹ , Yutaka Kazoe ⁴ , Chihchen Chen ¹ , and Takehiko Kitamori ^{1,3,5} ¹ National Tsing Hua University, TAIWAN, ² University of Tokyo, JAPAN, ³ Kanagawa Institute of Industrial Science and Technology, JAPAN, ⁴ Keio University, JAPAN, and ⁵ Lund University, SWEDEN
W148.e	NEW MULTI-RESOLUTION 3D PRINTING: 2 µM CHANNELS AND TINY DIFFUSION MIXER IN ONLY 0.017 MM^3 PRINTED VOLUME Dallin Miner, Matthew Viglione, Kent Hooper, Adam T. Woolley, and Gregory P. Nordin Brigham Young University, USA
W149.e	PARYLENE-BASED MICROCHANNELS FOR BRAIN DRUG DELIVERY APPLICATIONS Feyza Pirim, Akin M. Yılmaz, Ali C. Atik, Haluk Kulah, and Mahmut K. Aslan <i>Middle East Technical University, TURKEY</i>
W150.e	SINGLE-CELL TRAPPING AND RELEASING METHOD USING NITROGEN GAS GENERATED FROM LIGHT-RESPONSIVE GAS-GENERATING POLYMER (LGP) Hidetaka Ueno ¹ , Yoshinori Akagi ² , and Shohei Yamamura ³ ¹ Kobe University, JAPAN, ² Sekisui Chemical Co., Ltd., JAPAN, and ³ National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

W151.e SUPERHYDROPHILIC/ SUPERHYDROPHOBIC DROPLET MICROARRAYS FOR NUCLEIC ACID DETECTION

Mohammad Awashra¹, Pinja Elomaa², Päivi Saavalainen², and Ville Jokinen¹

¹Aalto University, FINLAND and ²University of Helsinki, FINLAND

Nanoscale Fabrication, Patterning and Integration

M153.e FABRICATION OF HOMOGENEOUS SHELL-ISOLATED SERS SUBSTRATES FOR CATALYTIC APPLICATIONS

Ketki Srivastava¹, Thimo S. Jacobs², Stefan Ostendorp³, Dirk Jonker⁴, Arturo Susarrey Arce⁴, Han Gardeniers⁴, Gerhard Wilde³, Bert M. Weckhuysen², Albert van den Berg¹, Ward van der Stam², and Mathieu Odijk¹ ¹ University of Twente, NETHERLANDS, ² Utrecht University, NETHERLANDS.

¹University of Iwente, NETHERLANDS, ²Utrecht University, NETHERLANDS, ³WWU Münster, GERMANY, and ⁴University of Twente, NETHERLANDS

M154.e HIGH-THROUGHPUT NANOPARTICLE ALIGNMENT AND PATTERNING USING WRINKLE-BASED NANOCHANNEL ARRAY: TOWARD MULTIPLEX BIOSENSORS

Yeonghoon Jeong, Jungyu Park, Minsu Kwon, and Taesung Kim Ulsan National Institute of Science and Technology (UNIST), KOREA

T152.e BUBBLE DEGASSING CHARACTERISTICS VIA NANOSTRUCTURES ON THE SUBSTRATE OF A MICROFLUIDIC DEVICE Hyewon Kim¹, Hyewon Lim¹, Yejin Nam², Sanghyun Lee², Sangmin Lee², and Hyungmo Kim¹

¹Gyeongsang National University, KOREA and ²Dongeui University, KOREA

T153.e NANOSCALE LENSES EMBEDDED IN MICROFLUIDIC CHANNELS FOR SIZE-SELECTIVE OPTICAL TRAPPING AND GUIDING OF PARTICLES Brigham Pope and Stephen Jacobson Indiana University, USA

T154.e TARGETED INSERTION OF DNA NANOPORE INTO GIANT LIPOSOMES Hiroki Koiwa¹, Shin-ichiro M. Nomura², Satoshi Murata², and Kan Shoji¹ ¹Nagaoka University of Technology, JAPAN and ²Tohoku University, JAPAN

W152.e ENHANCED BIOMOLECULE SENSING USING NANOWIRE-INTEGRATED PLASTIC LABWARE FABRICATED BY INJECTION MOLDING FOR IMPROVED ANTIBODY DETECTION

Jung Kim, Yujin Jung, Jong-Hwan Lee, Sung Kyun Lee, Nam Hoon Kim, and Hong Gi Kim

Korea Research Institute of Chemical Technology, KOREA

W153.e SELF-ASSEMBLED, HIERARCHAL NANOPATTERNED STRUCTURES TO ENHANCE DURABILITY OF LUBRICANT INFUSED SURFACES Joowon Lim, Beomsu Kim, Chenrui Li, Geonho Lee, Seokhyun Noh, Junho Oh, and Won Chul Lee Hanyang University, KOREA

New Materials and Surface Modification

M155.e ARTIFICIAL IRIS FOR ENHANCED ANTI-COUNTERFEITING STRATEGIES Cheolheon Park¹ and Daewon Lee²

¹Seoul National University, KOREA and ²Mvongii University, KOREA

MEMS COMPATIBLE SUBSTRATES FOR CYANOBACTERIA MOTILITY M156 e STUDIES IN LOC DEVICES Lourdes Albina Nirupa Julius¹, Lukas Matter¹, Nils Schuergers², Johannes Lützenkirchen¹, Vanessa Trouillet¹, Teba Gil-Díaz^{1,3}, Emil R. Mamleyev¹, Annegret Wilde², Vlad Badilita¹, and Jan G. Korvink¹ ¹Karlsruhe Institute of Technology, GERMANY, ²University of Freiburg, GERMANY, and ³Friedrich Schiller University Jena, GERMANY OMNIPHOBIC AND SUBSTRATE-INDEPENDENT SPRAY COATING M157.e CONSISTING OF HIERARCHICAL STRUCTURES PREVENTS THE TRANSMISSION OF INFECTIOUS DISEASES ON HIGH-TOUCH SURFACES Noor Abu Jarad, Kenneth Rachwalski, Fereshteh Bayat, Shadman Khan, Amid Shakeri, Roderick MacLachlan, Martin Villegas, Eric D. Brown, Leyla Soleymani, and Tohid F. Didar McMaster University, CANADA **HIGH-RESOLUTION 3D IMAGING OF CANCER CELLS INFILTRATING** T155.e A CYTOP V-GROOVE MICROCHANNEL DIRECTLY WRITTEN BY FS-LASER Kazunari Ozasa, Kotaro Obata, Hirovuki Kawano, Atsushi Mivawaki, and Koji Sugioka Institute of Physical and Chemical Research (RIKEN), JAPAN T156.e NANOFIBERS WITH DIFFERENT PHYSICOCHEMICAL PROPERTIES AS A NEW SUBSTRATE FOR MICRO- AND NANOENGINEERING USED FOR HYPOXIA SIMULATION OF HUMAN CARDIOMYOCYTES Zuzanna Iwoń¹, Aleksandra Kierlańczyk¹, Ewelina Krogulec², Michał Wojasiński¹, Iwona Łopianiak¹, and Elżbieta Jastrzebska¹ ¹Warsaw University of Technology, POLAND and ²Nencki Institute of Experimental Biology PAS. POLAND OSTEMER AS A MATERIAL SUITABLE FOR BIOLOGICAL T157.e MICROFLUIDIC APPLICATIONS Petr Aubrecht, Jiří Smeikal, Petr Panuška, Klára Španbauerová, Viktorie Neubertová, Jindřich Matoušek, Stanislav Vinopal, Michaela Liegertová, Marcel Štofik, and Jan Malý Jan Evangelista Purkyně University in Ústí nad Labem, CZECH REPUBLIC A SCALABLE, MICROFLUIDIC APPROACH FOR FABRICATION OF W154.e METER-LONG ALIGNED COLLAGEN SHEET FOR LOAD-BEARING SCAFFOLDS Samuel V. Lasinski, Lihua Wei, Yuming Zhang, Chantel Campbell, Wuyang Gao, and Axel Guenther University of Toronto, CANADA INFLUENCE OF AIR PLASMA TREATMENT ON THE CONTACT ANGLE W155.e **OF FLEXDYM®** Samuel Wenger, Mattéo Meister, Laure Jeandupeux, Frédéric Flahaut, Jérôme Charmet, and Alexandra Homsy Haute Ecole Arc, SWITZERLAND NEW PDMS CROSSLINKING PROCEDURE W156.e Michal Chudy, Elżbieta Jastrzębska, Monika Mehra, and David Madukwe Warsaw University of Technology, POLAND

W157.e TOWARDS ECO-FRIENDLY LAB-ON-A-CHIP WITH BIO-SOURCED POLYMER

Morgane Zimmer¹, Stephane Trombotto², Anne-Laure Deman¹, and Emmanuelle Laurenceau¹ ¹Université Claude Bernard Lyon 1, FRANCE and ²Ingénierie des Matériaux Polymères, FRANCE

Others

M158.e A METHOD FOR REGULATING THE FATE OF STEM CELLS USING SELF-POWERED DEVICES

Jing Li and Dahai Ren *Tsinghua University, CHINA*

T158.e ADAPTATION OF OPENROAD FOR MICROFLUIDIC DESIGN AUTOMATION

Brady Goenner¹, Scott Temple¹, Pierre Emmanuel-Gaillardon¹, Gregory Nordin², and Bruce K. Gale¹ ¹ University of Utah, USA and ²Brigham Young University, USA

f - Sensors and Detection Technologies

Chemical & Electrochemical Sensors

M159.f DEVELOPMENT OF AN ORIGINAL MICROMACHINED FLUIDIC CIRCUIT BOARD FOR A COMPACT MULTIGAS DETECTION SYSTEM EXCLUSIVELY BASED ON MEMS COMPONENTS

Florence Ricoul, Jean-Baptiste Tissot, Raymond Charles, Armelle Keiser, and Nicolas Verplanck *University Grenoble Alpes, FRANCE*

M160.f EXTRACTION-FREE DETECTION OF LISTERIA MONOCYTOGENES WITH AN ELECTROCHEMICAL LAMP-BASED SENSOR IN FOOD SAMPLES

Ane Rivas Macho¹, Unai Eletxigerra², Ruth Díez-Ahedo², Santos Merino^{2,3}, Felipe Goñi-de-Cerio¹, and Garbiñe Olabarria¹ ¹GAIKER Technology Center, SPAIN, ²TEKNIKER, SPAIN, and ³University of the Basque Country, SPAIN

M161.f MICROFLUIDIC BIOSENSOR FOR THE CONTINUOUS ENZYMATIC DETECTION OF ORGANOPHOSPHATE PESTICIDES IN WATER Julie Lachaux, Celestine Mairaville, Menel Ben Frej, Hervé Volland, Stephanie Simon, and Karla Perez Toralla

Paris-Saclay University, FRANCE

M162.f MICROFLUIDIC IM DETECTION OF AN AND VACCINES Ruta Grinyte¹, Pol N

MICROFLUIDIC IMMUNOSENSOR FOR IMMUNE RESPONSE DETECTION OF ANTIBIOTIC RESISTANT BACTERIA AND VACCINES

Ruta Grinyte¹, Pol Monterde¹, Daniel M. Prats¹, David Cecilia¹, Pooya Azizian^{1,2}, and Joan M. Cabot¹ ¹Leitat Technological Center, SPAIN and ²Technical University of Catalonia, SPAIN

M163.f NANODISC-BASED PORTABLE BIOELECTRONIC NOSE FOR MONITORING OF FOOD FRESHNESS IN GAS PHASE Hyun Seok Song

Korea Institute of Science and Technology, KOREA

PLA/AU MICRONEEDLES-BASED ELECTROCHEMICAL SENSORS FOR M164.f INTERSTITIAL FLUID GLUCOSE MONITORING: FACILE FABRICATION AND SUPERIOR PERFORMANCE Shicheng Zhou, Toshihiro Kasama, Ryo Miyake, and Madoka Takai University of Tokyo, JAPAN M165.f SMART SENSOR LID FOR MONITORING PH IN MULTIWELL PLATES Micaela T. Oliveira^{1,2,3}, Luke Marren^{1,4}, Ana S. Martins¹, Lorena Diéguez¹, and Alar Ainla¹ ¹ International Iberian Nanotechnology Laboratory (INL), PORTUGAL, ²University of Minho, PORTUGAL, ³University of Oulu, FINLAND, and ⁴Technological University Dublin, IRELAND T159.f DEVELOPMENT OF ELECTROCHEMICAL DNA SENSOR WITH NANOPORE-BASED DNA EXTRACTION FUNCTION Haruki Tanabe, Hiromu Akai, and Kan Shoji Nagaoka University of Technology, JAPAN T160.f INTEGRATION AND RELIABILITY OF THIN FILM ELECTRODES IN MINIATURIZED ELECTROCHEMICAL CELLS Elizaveta Vereshchagina¹, Karolina Kolczyk-Siedlecka², Zbigniew Szklarz², Aina K. Herbjørnrød¹, Paul Wittendorp¹, Guido Sordo¹, Shruti Jain¹, Chi Hoang¹, Sigurd Moe¹, Anand Summanwar¹, and Pawel Wojcik² ¹SINTEF Digital. NORWAY and ²redoxme AB sp. z o.o. Oddział w Polsce. POLAND MOLECULARLY IMPRINTED ELECTROCHEMICAL SENSOR BASED ON T162.f THE POLY(O-PHENYLENEDIAMINE-CO-O-AMINOPHENOL) FOR DETECTION OF WHITE SPOT SYNDROME VIRUS VIA VIRAL ENVELOPE PROTEIN VP28 Young-ran Yun Gwangju Institute of Science and Technology (GIST), KOREA T163.f NANOPORE SENSING FOR NUCLEIC ACID DETECTION AT FEMTOMOLAR LEVELS WITHOUT AMPLIFICATION Nanami Takeuchi and Ryuji Kawano Tokyo University of Agriculture and Technology, JAPAN T164.f POINT-OF-CARE MULTIPLEXED ELECTROCHEMICAL BIOSENSOR FOR SALIVARY HEART FAILURE BIOMARKERS Trey W. Pittman¹, Chuck Henry^{1,4}, Chamindie Punyadeera^{2,3}, Xi Zhang², and Daniel Decsi² ¹Colorado State University, USA, ²Griffith University, AUSTRALIA, ³Translational Research Institute, AUSTRALIA, and ⁴Chulalongkorn University, THAILAND W158.f ANALYTICAL DETERMINATION OF TRANSEPITHELIAL ELECTRICAL RESISTANCE FROM ELECTRIC CELL-SUBSTRATE IMPEDANCE SENSING METHOD AS THE DIAMETER OF THE ELECTRODES GOES MICRO Jose Yeste^{1,2,3,4}, Xavi Illa^{3,4}, Nitesh Shashikanth^{1,2}, Denise Marrero^{3,4}, Anton Guimerà-Brunet^{3,4}, Rosa Villa^{3,4}, and Jerrold R. Turner^{1,2} ¹Brigham and Women's Hospital, USA, ²Harvard Medical School, USA, ³Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), SPAIN, and ⁴Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), SPAIN

SNO

PRESENTATIONS

W159.f	ELECTROCHEMICAL MICROFLUIDIC SENSOR BASED ON CELL IMPRINTED POLYMER-COATED MICROWIRES FOR SELECTIVE RECOGNITION OF BACTERIA IN WATER Shiva Akhtarian ¹ , Satinder Kaur Brar ¹ , Garrett Kraft ² , and Pouya Rezai ¹ ¹ York University, CANADA and ² Sixth Wave Innovations Inc., CANADA
W160.f	MICROBIAL COUNTING IN AN ARRAY OF MICROCHAMBERS COMBINED WITH A CHEMICAL IMAGING SENSOR Ko-ichiro Miyamoto ¹ , Yohta Horie ¹ , Ryuju Arai ¹ , Carl Frederik Werner ² , and Tatsuo Yoshinobu ¹
W161.f	MICROFLUIDIC DETERMINATION OF EQUIVALENCE AND ISOELECTRIC POINTS USING 3D-PRINTED FLOW CELL AND OPEN-SOURCE AUTOMATION STRATEGY Robin Dinter, Lennart Helwes, Stijn De Vries, Henning Jibben, Marcel Pillath, and Norbert Kockmann TU Dortmund University, GERMANY
W162.f	NANO-STRUCTURIZED LEAD NEELDES PRODUCED UTILIZING SULFURIC ACID ELECTRO-ETCHING FOR ELECTROCATALYTIC DETECTION OF PIROXICAM IN URINE Wei-Ren Hou, Dai-En Li, and Che-Hsin Lin National Sun Yat-sen University, TAIWAN
W163.f	PAPER-BASED ELECTROCHEMICAL LACTATE SENSOR FABRICATED BY LASER-INDUCED GRAPHENE TECHNIQUE FOR HUMAN SWEAT ANALYSIS Jinze Chen, Panpan Gao, Toshihiro Kasama, Madoka Takai, and Ryo Miyake University of Tokyo, JAPAN
	Optical Detection & Imaging
M166.f	A HIGH-SENSITIVITY, HIGH Q-FACTOR TERAHERTZ METASURFACE SENSOR BASED ON SURFACE LATTICE RESONANCES FOR BIOCHEMICAL DETECTION Sun Hongshun, Li Liye, Ma Lijun, Cao Yunhao, Chen Yusa, Xiong Shisong, Yang Bingquan, and Wu Wengang Peking University, CHINA
M167.f	ALGINATE/TIO2 BEAD BIOSYSTEM FOR CHOLESTEROL DETERMINATION IN A MICROFLUIDIC DEVICE Sandra Garcia-Rey ¹ , Juncal A. Alonso-Cabrera ¹ , Udara B. Gunalitake ¹ , Lourdes Basabe-Desmonts ^{1,2} , and Fernando Benito-Lopez ¹ ¹ University of the Basque Country, SPAIN and ² IKERBASQUE, SPAIN
M168.f	DEPENDENCE ON MOLECULAR ADSORPTION AND DESORPTION ON THE SERS STRUCTURE USING BOEHMITE Shunya Saegusa ¹ , Taku Tanaka ¹ , Ryota Tanaka ¹ , Masayuki Naya ² , Takao Fukuoka ¹ , Yuichi Utsumi ¹ , and Akinobu Yamaguchi ¹ ¹ University of Hyogo, JAPAN and ² Keio University, JAPAN
M169.f	DUAL-FIELD CELL CHARACTERIZATION AND SORTING VIA NEUROMORPHIC-ENABLED IMAGING FLOW CYTOMETRY Weihua He, Yongxiang Feng, Fei Liang, Junwen Zhu, and Wenhui Wang Tsinghua University, CHINA

M170.f IN-LINE MICRO SPECTROMETER AS THE COLOR AND CONCENTRATION SENSOR WITH A STRUCTURAL COLOR POLYMER

Satoshi Nishita and Hiroaki Onoe *Keio University, JAPAN*

M171.f NEXT GENERATION IN-SITU SENSING-ON-CHIP (µSOC)

Chayenne W.C. van Dongen¹, Georgia Kontaxi¹, Hanieh Bazyar¹, Behrooz Fereidoonnezhad¹, Nikolas Gaio², and Tawab Karim² ¹Delft University of Technology, NETHERLANDS and ²Bi/ond, NETHERLANDS

M172.f THREAD-BASED OPTICAL BIOSENSOR FOR UREA DETERMINATION

Izabela Lewińska¹, Paweł Bącal², Miguel M. Erenas^{3,4}, Luis Fermín Capitán-Vallvey^{3,4}, and Łukasz Tymecki¹ ¹University of Warsaw, POLAND, ²Polish Academy of Sciences, POLAND, ³University of Granada, SPAIN, and ⁴University of Granada, SPAIN

T165.f 3D BIOPRINTED HYDROGEL SENSOR WITH OPTICAL DETECTION TOWARDS RAPID PH-BASED SALIVARY DIAGNOSTICS Magdalena Łabowska, Agnieszka Krakos (Podwin), and Wojciech Kubicki Wrocław University of Science and Technology, POLAND

T166.f A LABEL-FREE STRATEGY TO CLASSIFY MICROEMBOLUS AND WHITE BLOOD CELLS IN MICRORESERVOIRS USING LENSLESS IMAGING POWERED WITH DEEP LEARNING-BASED ALGORITHMS Alperay E. Tarim¹, Oyku Doyran¹, Eda Efe¹, Ozden Yalcin-Ozuysal¹, and Cumhur H. Tekin^{1,2} ¹*Izmir Institute of Technology, TURKEY and ²METU MEMS Center, TURKEY*

T167.f AN ANGLE-MULTIPLEXED ALL-METAL METASURFACE FOR REFRACTIVE INDEX SENSING BASED ON SURFACE LATTICE RESONANCE

Liye Li and Wengang Wu Peking University, CHINA

T168.f DEVELOPMENT OF A GLOBOTRIAOSYLCERAMIDE (GB3) SUPPORTED LIPID BILAYER (SLB)-FORMED MICROCHIP TO OPTICALLY DETECT SHIGA TOXIN IN FOODS

Jeongtae Kim¹, Keying Li¹, Jeongyun Kim², Moo-Seung Lee³, and Chiwan Koo¹

¹Hanbat National University, KOREA, ²Dankook University, KOREA, and ³Korea Research Institute of Bioscience and Biotechnology (KRIBB), KOREA

T169.f EGGSHELL BIOACTIVE MEMBRANE-ASSISTED FABRICATION OF COPPER NANOCLUSTERS AS A VOLATILE AMMONIA-RESPONSIVE FLUORESCENT PROBE FOR EVALUATION OF CHRONIC KIDNEY DISEASE STAGE AT AMBIENT TEMPERATURE

Yi-Hsin Chien, Kuan-Hsiang Yeh, Zheng-Da Du, Wei-Chen Lin, and Yu-Ling Huang *Feng Chia University, TAIWAN*

- T170.f IONIC LIQUID-BASED DYE NANOEMULSION USING MEROCYANINE DYE: HIGHLY-SENSITIVE AND RAPIDLY-RESPONSIVE ION-SENSING COMPONENT OF HYDROGEL-BASED MICROANALYTICAL DEVICES Yu Koizumi, Shuto Oka, Kenji Sueyoshi, Tatsuro Endo, and Hideaki Hisamoto Osaka Metropolitan University, JAPAN
- T171.f PHYSIOLOGICAL GLUCOSE SENSING IN 3D TUMOUR SPHEROIDS USING SERS BASED NANO PARTICLE SENSORS Koyel Dey^{1,2}, Venkanagouda S. Goudar¹, Fan Gang Tseng¹, and Tuhin Santra² ¹National Tsing Hua University, TAIWAN and ²Indian Institute of Technology, Madras, INDIA
- W165.f 3D PRINTED CELL ENCAPSULATION SYSTEM TOWARDS DRY-RESISTANT YEAST-BASED BIOHYBRID SENSOR Kazuki Nishimoto, Minghao Nie, and Shoji Takeuchi University of Tokyo, JAPAN
- W166.f A SURFACE LATTICE RESONANCE BIOCHEMICAL SENSOR BASED ON A COMPOSITE METAL METASURFACE Liye Li, Lijun Ma, Yifan Ouyang, and Wengang Wu Peking University, CHINA
- W167.f AN OPEN SPACE OPTOFLUIDIC SENSOR BASED ON WHISPERING GALLERY MODE MICROSPHERES FOR VIRUS DETECTION Bin Guan¹, Tuck-Weng Kok², Nicolas Riesen¹, David G. Lancaster¹, Koukou Suu³, and Craig Priest¹ ¹University of South Australia, AUSTRALIA, ²University of Adelaide, AUSTRALIA, and ³ULVAC Inc., JAPAN
- W168.f DEVELOPMENT OF SILICON NITRIDE INTEGRATED PHOTONICS PLATFORM FOR BIOSENSING APPLICATIONS Mateusz Slowikowski, Marcin Juchniewicz, Marcin Lelit,

Adrian Duszczyk, Sylwia Karon, Krystian Pavlov, Maciej Filipiak, Bartlomiej Stonio, Bartosz Michalak, Michal Golas, Marcin Mysliwiec, and Piotr Wisniewski *Warsaw University of Technology, POLAND*

W169.f FLUOROMETRIC DETECTION OF SALMONELLA IN WATER USING CELL IMPRINTED POLYMER THIN FILMS INTEGRATED WITH A MICROFLUIDIC DEVICE

Islam Mahmoud¹, Ali Doostmohammadi¹, Garret Kraft², and Pouya Rezai¹ ¹ York University, CANADA and ² Sixth Wave Innovations Inc, CANADA

W170.f MICROFLUIDIC ELECTROCHEMICAL SURFACE-ENHANCED RAMAN SCATTERING SENSORS FOR DETECTION OF PESTICIDES IN SURFACE WATERS

Elizaveta Vereshchagina¹, Karolina Milenko¹, Rebeca Moldovan², Aina K. Herbjørnrød¹, Anand Summanwar¹, Guido Sordo¹, Sigurd Moe¹, Firehun Tsige Dullo¹, Cosmin Farcau³, and Ede Bodoki² ¹*SINTEF Digital, NORWAY,*²*University of Medicine and Pharmacy, ROMANIA, and* ³*National Institute for Research and Development of Isotopic and Molecular Technologies, ROMANIA*

W171.f SELF-ASSEMBLED PHOTOSENSITIVE DNA/SG-I NANOFLOWER-ASSISTED COLORIMETRIC SENSOR FOR DETECTION OF CARCINOEMBRYONIC ANTIGEN

Shan He, Huiting Lian, Xuegong Cao, Bin Liu, and Xiaofeng Wei *Huaqiao University, CHINA*

Physical Sensors

M173.f COULOMETRIC DETECTION OF FLOW RATE IN A MICROCHANNEL USING ON-CHIP MICROELECTRODES Harsh Deswal¹, Ullas Pandey², Shiv G. Singh², and Amit Agrawal¹ ¹Indian Institute of Technology, Bombay, INDIA and ²Indian Institute of Technology, Hyderabad, INDIA

- M174.f FLEXIBLE ULTRA THIN GLASS SHEET CANTILEVER INTEGRATED WITH STRAIN GAUGE SENSOR FOR STIFFNESS MEASUREMENT Yapeng Yuan^{1,3}, Yaxiaer Yalikun², and Yo Tanaka³ ¹Osaka University, JAPAN, ²Graduate School of Nara Institute of Science and Technology, JAPAN, and ³Institute of Physical and Chemical Research (RIKEN), JAPAN
- M175.f POSITION INDEPENDENT MICROPARTICLE SENSING WITH SU8 MICROELECTRODES 3-D INTEGRATED WITH MICROWAVE SENSORS Yağmur C. Alataş¹, Uzay Tefek¹, Burak Sarı², and Mehmet S. Hanay¹ ¹ Bilkent University, TURKEY and ²Sabancı University, TURKEY
- T173.f EIS MONITORING OF SINGLE YEAST GROWTH AND DISSECTION ON A MEA-INTEGRATED MICROFLUIDIC DEVICE Zhao Zhang¹, Mingze Luo¹, Liudi Dong¹, Haoran Wu¹, Yanze Shi¹, Yingying Wang¹, Xiao Xie¹, Zixin Wang², Qing-An Huang¹, and Zhen Zhu¹ ¹ Southeast University, CHINA and ²Sun Yat-Sen University, CHINA

T174.f MICRO ULTRASONIC ENDOSCOPE ARRAYS FOR INVASIVE KNEE JOINT DIAGNOSTICS Yuchen Chiang, Chien-Chong Hong, and Tong-Miin Liou National Tsing Hua University, TAIWAN

T175.f STUDY ON GEOMETRIC STRUCTURE OPTIMIZATION OF SPATIAL POSITIONING DEVICE BASED ON FLOATING ELECTRODES Tan Wang, Qiang Fang, and Liang Huang Hefei University of Technology, CHINA

W172.f CLOSED LOOP, LOCALIZED TEMPERATURE CONTROL FOR MICRO-FLUIDICS Saima Hamid, Naveen Kumar K. Ramakrishnan, and Shishir Kumar

Saima Hamid, Naveen Kumar K. Ramakrishnan, and Shishir Kumar Indian Institute of Technology, Hyderabad, INDIA

W173.f ELECTRO-MICROFLUIDIC DETECTION AND QUANTIFICATION OF MICROPLASTICS IN WATER: SALINITY'S IMPACT ON SENSOR PERFORMANCE

Haider Warraich, Alireza Zabihihesari, Shooka Karimpour, and Pouya Rezai *York University, CANADA*

PRESENTATIONS

W174.f	ORIGAMI-INSPIRED TACTILE SENSOR WITH ENHANCED SENSITIVITY IN POSTURE AND BRUXISM DETECTION Rajat Subhra Karmakar ¹ , Chia-Pei Chu ¹ , Jhih-Fong Huang ² , Jui-I Chao ² , Ying-Chih Liao ¹ , and Yen-Wen Lu ¹ ¹ National Taiwan University, TAIWAN and ² National Yang Ming Chiao Tung University, TAIWAN
	Others
M176.f	EVALUATION METHOD FOR INTERNAL ELASTIC DISTRIBUTIONS OF CELL CULTURE ENVIRONMENTS BY USING ARRAYED LIGHT-DRIVEN GEL ACTUATORS Hibiki Nakajima', Yoshiyuki Yokoyama ² , Masaya Hagiwara ³ , and Takeshi Hayakawa ¹ ' <i>Chuo University, JAPAN</i> , ² <i>Toyama Industrial Technology Research and</i> <i>Development Center, JAPAN, and</i> ³ <i>Institute of Physical and Chemical</i> <i>Research (RIKEN), JAPAN</i>
M177.f	SMARTPHONE-BASED TACHOMETER FOR LOW-COST POINT-OF- CARE CENTRIFUGAL MICROFLUIDICS APPLICATIONS Noa Lapins, Ahmad Saleem Akhtar, and Aman Russom KTH Royal Institute of Technology, SWEDEN
T176.f	MULTIPLEXED BIOSENSOR USING QUARTZ-ON-SILICON MICRO- ACOUSTIC (QSIM) TECHNOLOGY FOR IN-VITRO LABEL-FREE INVESTIGATION OF HEMOSTASIS Aleksander Oseev ^{1,4} , Franck Chollet ^{1,4} , Thomas Lecompte ^{2,3} , and Thérèse Leblois ^{1,4} ¹ University Bourgogne Franche-Comté, FRANCE, ² Université de Lorraine, FRANCE, ³ Université de Genève, SWITZERLAND, and ⁴ CNRS, FRANCE
W175.f	A MINIATURIZED 3-D-MRI SCANNER FEATURING A HIGH-VOLTAGE SOI ASIC FOR NON-INVASIVE OBJECT RECONSTRUCTION AND FLOW ANALYSIS Shuhao Fan ¹ , Qi Zhou ¹ , Ka-Meng Lei ¹ , Rui P. Martins ^{1,2} , and Pui-In Mak ¹ ¹ University of Macau, MACAO and ² Universidade de Lisboa, PORTUGAL
W176.f	PERMITTIVITY-BASED MICROPARTICLE CLASSIFICATION BY THE INTEGRATION OF IMPEDANCE CYTOMETRY AND MICROWAVE RESONATORS Uzay Tefek ¹ , Burak Sari ² , and Mehmet S. Hanay ¹ ¹ Bilkent University, TURKEY and ² Sabanci University, TURKEY
	g - Other Applications of Microfluidics
	Artificial Intelligence and Microfluidics
M178.g	AUTONOMOUS CELL DISTROBUTION CONTROL MICROFLUIDIC SYSTEM BASED ON DEEP REINFORCEMENT LEARNING Kenji Tamura, Takaaki Abe, and Yoshiaki Ukita University of Yamanashi, JAPAN
M179.g	EVALUATING DONOR RED BLOOD CELL QUALITY USING BLOOD SMEARS AND DEEP LEARNING Erik S. Lamoureux ¹ , You Cheng ¹ , Emel Islamzada ¹ , Kerryn Matthews ¹ , Simon P. Duffy ^{1,2} , and Hongshen Ma ^{1,3} ¹ University of British Columbia, CANADA, ² British Columbia Institute of Technology, CANADA, and ³ Vancouver General Hospital, CANADA

T177.g ARTIFICIAL INTELLIGENCE-BASED VESSEL-ON-A-CHIP PLATFORM FOR ACCURATE IDENTIFICATION OF DEVELOPMENTAL STAGES IN VASCULOGENESIS

Hang Zhou, Taiga Irisa, Kazuya Fujimoto, and Ryuji Yokokawa *Kyoto University, JAPAN*

T178.g DEEP LEARNING-BASED OBJECT DETECTION FOR SOIL BACTERIAL COMMUNITY ANALYSIS IN MICROFLUIDICS

Hanbang Zou, Alexandros Sopasakis, Francois Maillard, Erik Karlsson, Julia Duljas, Simon Silwer, Pelle Ohlsson, and Edith C. Hammer *Lund University, SWEDEN*

T179.g SEGMENTATION, FEATURE EXTRACTION AND CLASSIFICATION OF LEUKOCYTES LEVERAGING DEEP NEURAL NETWORKS

Tingxvan Fang^{1,2}, Xvkun Huang^{1,3}, Xiao Chen^{1,3}, Deyong Chen^{1,3}, Junbo Wang^{1,3}, and Jian Chen^{1,3} ¹ *Chinese Academy of Sciences, CHINA, ²Wuhan University, CHINA, and* ³ *University of Chinese Academy of Sciences, CHINA*

W177.g ARTIFICIAL INTELLIGENT IDENTIFICATION AND CLASSIFICATION OF SINGLE CANCER CELLS USING HYPERSPECTRAL IMAGE COMBINED WITH MACHINE LEARNING WITHOUT FLUORESCENCE LABELING Chih-Ching Hsu¹ and Fan-Gang Tseng^{1,2} ¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN

W178.g DEEP LEARNING-ENABLED HIGH-THROUGHPUT DETECTION OF

SARS-COV-2 VARIANT OF CONCERN USING THE CENTRIFUGAL MICROFLUIDIC PLATE

Li Zhang and Youchun Xu Tsinghua University, CHINA

Fuel Cells & Energy

W179.g INSIGHTS IN OPERATION OF MEMBRANELESS MICRO FLOW BATTERIES

Alberto E. Quintero^{1,2}, Beatriz Oraá-Poblete¹, Daniel Perez-Antolin¹, Ange A. Maurice², and Alberto Bernaldo de Quirós¹ ¹*Micro Electrochemical Technologies S.L., SPAIN and* ²*Carlos III of Madrid University, SPAIN*

Microfludics for X-Ray and e-Beam Applications

M180.g CREATION OF A BIOLOGICAL X-RAY IMAGING SYSTEM INCORPORATING A MICROFLUIDIC SYSTEM Akinobu Yamaguchi, Kanta Yamamoto, Shunya Saegusa, Hidehiro Ishizawa, Masahiro Takeo, Sho Amano, Satoru Suzuki, and Yuichi Utsumi University of Hyogo, JAPAN

M181.g X-RAY-COMPATIBLE MICROFLUIDIC DEVICE FOR DIELECTROPHORETIC MANIPULATION AND TRAPPING OF CELLS AND MICROPARTICLES Simone De Carli¹, Neus Godino¹, Christian Guernth-Marschner¹, Chang Liu^{2,3}, Wilhelm Eschen^{2,3}, Jan Rothhardt^{2,3,4}, and Michael Kirschbaum¹ ¹Fraunhofer IZI-BB, GERMANY, ²Friedrich-Schiller-University Jena, GERMANY, ³Helmholtz-Institute Jena, GERMANY, and ⁴Fraunhofer IOF, GERMANY

T180.g DROPLET-ON-DEMAND SAMPLE DELIVERY AT A PULSED X-RAY SOURCE

Sebastian Dehe, Mark S. Hunter, Raymond G. Sierra, Thomas Kroll, and Daniel P. DePonte *Stanford University, USA*

W180.g IN SITU X-RAY DIFFRACTION OF ACCELERATED CEMENT CARBONATION WITH A 3D-PRINTED MICROFLUIDIC DEVICE Valentin Herault, Eddy Foy, Valérie Geertsen, Corinne Chevallard, Stéphane Poyet, and Mark A. Levenstein Université Paris-Saclay, FRANCE

Microfluidics in Military and Defense Applications

T181.g AT-HOME BIOAEROSOL SAMPLING USING AEROSOLIZED DROPLETS AND OPEN MICROFLUIDICS

Wan-chen Tu, Jodie C. Tokihiro, David N. Phan, Tammi L. van Neel, Ulri N. Lee, Jean Berthier, Igor Novosselov, John S. Meschke, Ashleigh B. Theberge, and Erwin Berthier *University of Washington, USA*

Paper-Based Microfluidics

M182.g BASIC EVALUATION OF COLORIMETRIC SIGNALING ON PAPER-BASED ANALYTICAL DEVICES FOR TRACE HEAVY METAL ION ANALYSIS

Misaki Nakagawa, Sera Ohta, Yuki Hiruta, and Daniel Citterio Keio University, JAPAN

M183.g COMBINATION OF PAPER-BASED MICROFLUIDICS AND A CAFETIÈRE-BASED PRE-CONCENTRATION PROCESS FOR ON-SITE DETECTION OF COPPER CONTAMINATION IN WATERS

Jacqueline Karlsson¹, Pablo Giménez-Gómez¹, Samantha Richardson², Alexander Iles¹, and Nicole Pamme¹ ¹Stockholm University, SWEDEN and ²University of Hull, UK

M184.g IMPACT OF PAPER CHARACTERISTICS ON CHEMIRESISTOR SWEAT VOLUME SENSOR

Genis Rabost-Garcia^{1,2}, Laura Verdaguer-Sánchez¹, and Jasmina Casals-Terré¹ ¹Universitat Politècnica de Catalunya, SPAIN and ²Onalabs Inno-hub S.L., SPAIN

M185.g

PAPER FLUIDICS FOR THE INVESTIGATION OF ROOT EXUDATES OF LIVING PLANTS IN SPACE AND TIME

Daniel Patko¹, Udara B. Gunatilake¹, Lionel X. Dupuy^{2,3}, Lourdes Basabe-Desmonts^{1,3}, and Fernando Benito-Lopez¹ ¹*University of the Basque Country, SPAIN,* ²*NEIKER, SPAIN, and* ³*IKERBASQUE, SPAIN*

M186.g SMART AND PORTABLE PAPER-BASED SENSOR FOR ON-SITE DETECTION OF NITRATES AND LEAD IONS IN ENVIRONMENTAL MONITORING

Akashlina Basu and Soumen Das Indian institute of Technology, Kharagpur, INDIA

T182.g	BLOOMSAFE: DEVELOPING A COST-EFFECTIVE, RAPID, AND PORTABLE DIAGNOSTIC TOOL FOR THE DETECTION OF TOXINS RESULTING FROM ALGAL BLOOMS
	Marcus S. Hill, Andrew P. Dean, James Redfern, and Kirsty J. Shaw
	Manchester Metropolitan University, UK
T183.g	DEVELOPMENT OF A DISTANCE-BASED PAPER ANALYTICAL DEVICE FOR ON-SITE MONITORING OF DISSOLVED INORGANIC CARBON IN INLAND WATERS
	Pablo Giménez-Gómez ¹ , Iris Hättestrand ¹ , Susanne Sjöberg ¹ , Christophe Dupraz ¹ , Samantha Richardson ² , Mike Rogerson ³ ,
	and Nicole Pamme ¹ ¹ Stockholm University, SWEDEN, ² University of Hull, UK, and ³ Northumbria University, UK
T184.g	MULTIPLEXED ANALYSIS OF SOIL NUTRIENTS WITH CAFETIÈRE-BASED EXTRACTION AND PAPER-BASED ANALYTICAL DEVICES (PADS) FOR ON-SITE MONITORING Nicolina Priem ¹ , Pablo Giménez-Gómez ¹ , Samantha Richardson ² ,
	and Nicole Pamme ¹ ¹ Stockholm University, SWEDEN and ² University of Hull, UK
T185.g	PAPER-BASED MICROFLUIDIC DEVICE FOR THE DETECTION OF MICROBIAL CONTAMINATION AND ANTIMICROBIAL RESISTANCE IN DRINKING WATER
	Yuwei Pan ^{1,2} and Zhugen Yang ¹ ¹ <i>Cranfield University, UK and ²University of Glasgow, UK</i>
W181.g	AN OFFLINE DEEP LEARNING-ASSISTED AUTOMATED PAPER-BASED MICROFLUIDIC PLATFORM
	Sixuan Duan ^{1,2} , Tianyu Cai ¹ , Fuyuan Liu ^{1,2} , Hang Yuan ¹ , Yifan Li ^{1,2} , Wenwen Yuan ^{1,2} , Keran Jiao ¹ , Min Chen ^{1,2} , Yuyuan Chen ¹ , and Pengfei Song ^{1,2}
	¹ Xi'an Jiaotong-Liverpool University, CHINA and ² University of Liverpool, UK
W182.g	CAPILLARY-DRIVEN MICROFLUIDICS COUPLED WITH PAPER-BASED PLATFORM FOR RAPID AND USER-FRIENDLY DETECTION OF
	WATER CONTAMINANTS Prakash Aryal ¹ , Claire Hefner ¹ , Eric Brack ² , Todd Alexander ² , and Charles Henry ^{1,3}
	¹ Colorado State University, USA, ² U.S. Army Combat Capabilities Development Command (DEVCOM), USA, and ³ Chulalongkorn University, USA
W183.g	EVALUATION OF PAPER-BASED LATERAL-FLOW STRIP FOR EARLY DIAGNOSIS OF BREAST CANCER USING ACTUAL HUMAN SERUM Jungchan Shin ¹ , Dongwoo Kim ¹ , Keunkoo Shin ¹ , Yugyeong Kim ² , Eunae Kang ² , Jongam Song ¹ , and Kyounghoon Suh ¹ ¹ E&S Healthcare Co., Ltd., KOREA and
	² Nature Inspired Energy Technology (NIET), KOREA

W184.g ORIGAMI PAPER MICROFLUIDIC ASSAY TO TEST EDIBLE OIL QUALITY

Pavithra Sukumar¹, Muhammedin Deliorman¹, Fernando Castano¹, Dana H. Abujalban³, Muhammad A. Datt³, and Mohammad A. Qasaimeh^{1,2} ¹New York University, Abu Dhabi, UAE, ²New York University, USA, and ³Jordan University of Science and Technology, JORDAN

W185.g REAL-TIME FLOW MONITORING PLATFORM FOR PAPER-BASED MICROFLUIDIC DEVICES

Isidoro Ruiz-García, Pablo Escobedo, Celia E. Ramos-Lorente, Miguel M. Erenas, Luis F. Capitan-Vallvey, Miguel A. Carvajal, Alberto J. Palma, and Nuria Lopez-Ruiz *University of Granada, SPAIN*

Space Exploration

M187.g LAB-PAYLOAD FOR BIO-NANOSATELLITE

Pat<mark>rycja Sniadek,</mark> Agnieszka Krakos, Adrianna Graja, Bartosz Kawa, Marcin Białas, Rafal Walczak, and Jan Dziuban *Wrocław University of Science and Technology, POLAND*

T186.g INERTIAL MICROFLUIDIC PASSIVE MIXER FOR BIOLOGICAL NANOSATELLITE MISSIONS

Adrianna Graja, Mateusz Gumieniak, Maciej Dzimira, Tymon Janisz, and Agnieszka Krakos *Wrocław University of Science and Technology, POLAND*

T187.g MEMS PLASMA SPECTROMETER FOR DETECTION OF THE BIOTIC METHANE ON MARS

Jan Dziuban¹, Pawel Knapkiewicz¹, Tomasz Grzebyk¹, and Pin Chen² ¹Wrocław University of Science and Technology, POLAND and ²Jet Propulsion Laboratory California Institute of Technology, USA

W186.g INTEGRATED MICROFLUIDIC SYSTEM FOR AUTOMATED BACTERIAL CULTIVATION IN SPACE

Wen-Ching Chen¹, Pin-Ru Huang¹, Jun-Wei Chang¹, Shao-Yu Huang¹, Chieh-Chen Huang¹, and Ya-Yu Chiang^{1,2} ¹*National Chung Hsing University, TAIWAN and* ²*National Taiwan University, TAIWAN*

W187.g MEMS-BASED MASS SPECTROMETER FOR POTABLE AND SPACE APPLICATIONS

Piotr Szyszka, Jakub Jendryka, Jan Sobków, Michał Zychla, Marcin Białas, Paweł Knapkiewicz, Jan Dziuban, and Tomasz Grzebyk *Wrocław University of Science and Technology, POLAND*

Others

M188.g A SELF-ALIGNING TERAHERTZ METASURFACE MICROFLUIDIC SENSOR WITH HIGH SENSITIVITY AND HIGH QUALITY FACTOR Yunhao Cao, Hongshun Sun, Lijun Ma, Yusa Chen, and Wengang Wu Peking University, CHINA

POSTER PRESENTATIONS

T188.g GROWING THE UNKNOWN: INVESTIGATION INTO A NEW APPROACH FOR IN-SITU MICROBIAL GROWTH

Sydney K. Wheatley^{1,2}, Tina Navaei³, Emily Pope³, Tartela Alkayyali³, Christopher Cartmell⁴, Bradley A. Haltli^{3,5}, Russell G. Kerr^{3,5}, and Ali Ahmadi^{1,2}

¹École de Technologie Supérieure, CANADA, ²University of Montreal Hospital Research Centre, CANADA, ³University of Prince Edward Island, CANADA, ⁴University of Arizona, USA, and ⁵Nautilus BioSciences, CANADA

SN

PRESENTATIO

LATE NEWS POSTER PRESENTATIONS

h – Late News		
Cells, Organisms and Organs on a Chip		
M189.h	A MICROFLUIDIC ANALYSIS OF CELL-CELL COMMUNICATION FOR SCREENING OF CHEMICALS TO REGULATE CIRCADIAN METABOLISM Huiseong Son and Chang-Soo Lee	
	Chungnam National University, KOREA	
M190.h	BIOENGINEERED HUMAN GUT-ON-CHIP MODEL TO STUDY HOST-MICROBIOME INTERACTIONS Elise Delannoy, Aurélie Burette, Catherine Daniel, Laurine De Rycker, and Alexandre Grassart University of Lille, FRANCE	
M191.h	DEVELOPMENT OF POLY(ETHYLENE-GLYCOL)-DIMETHACRYLATE (PEGDMA)-BASED BIOINK FOR STEREOLITHOGRAPHY THREE-DIMENSIONAL (3D) PRINTING Shu-Yung Chang, Joseph Zhi Wei Lee, Anupama S. Ranganath, Terry Ching, and Michinao Hashimoto Singapore University of Technology and Design, SINGAPORE	
M192.h	EXPLORATION OF DETRIMENTAL EFFECT OF AGES ON 3D SKELETAL MUSCLE MODEL IN MICROPHYSIOLOGICAL SYSTEM Jaesang Kim ¹ , Inu Kim ¹ , Jeongmoo Han ¹ , Jisong Ahn ² , Youngmin Jo ¹ , Pilnam Kim ¹ , Hongki Yoo ¹ , and Jessie S. Jeon ¹ ¹ Korea Advanced Institute of Science and Technology, KOREA and ² Korea Food Research Institute, KOREA	
M193.h	INTEGRATION OF SENSORS ONTO POROUS MEMBRANES FOR ELECTRICAL MONITORING OF CARDIOMYOCYTES Derrick J. Butler and Darwin R. Reyes National Institute of Standards and Technology, USA	
M194.h	MICROFLUIDIC 3D CULTURES OF SCAFFOLD-FREE CARDIOMYOCYTE SPHEROIDS DIFFERENTIATED FROM HUMAN-INDUCED PLURIPOTENT STEM CELLS Marina Castro Guerrero, Päivi Järvinen, Virpi Talman,	
	Markus Haapala, and Tiina Sikanen University of Helsinki, FINLAND	
M195.h	MICROGELS FOR A LARGE-SCALE SCREENING AND LONGITUDINAL OBSERVATIONS OF CANCER CELL DORMANCY Misa Minegishi ¹ and Hirofumi Shintaku ^{1,2} ¹ RIKEN, JAPAN and ² Kyoto University, JAPAN	
M196.h	PDMS-BASED MICROFLUIDIC APPROACH FOR PRIMARY MURINE ENDOTHELIAL CELLS PHENOTYPING Stefano Rocchetti ¹ , Kasper Marchlewicz ^{2,3} , Marek Grosicki ¹ , Kanchana Pandian ⁴ , Michal Chudy ³ , and Stefan Chlopicki ¹ ¹ Jagiellonian University, POLAND, ² Warsaw University of Technology, POLAND, ³ University of Warsaw, POLAND, and ⁴ Leiden University, NETHERLANDS	

M197.h	SPONTANEOUS DYNAMIC MICROCOMPARTMENTATION IN Cell-Sized Microdroplets
	Naoki Sasaki and Sakurako Kojima
	Rikkyo University, JAPAN
T189.h	A MICROFLUIDIC PLATFORM FOR STUDYING MECHANO-CHEMICAL INTERACTIONS BETWEEN CO-CULTURES OF CANCER AND ENDOTHELIAL CELLS
	Brian J. Nablo and Darwin R. Reves
	National Institute of Standards and Technology (NIST), USA
T <mark>190.</mark> h	BIOPRINTING OPTIMIZATION BY COMPUTATIONAL FLUID Dynamics modeling
	Simone L. Marasso ¹ , Francesca Frascella ² , Jens Grabel ³ ,
	Lucia Napione ² , Simona Villata ² , Desiree Baruffaldi ² ,
	Lukas Wichmann ³ , and Peter Farber ³
	¹ CNR-IMEM, ITALY, ² Politecnico di Torino, ITALY, and
	³ Hochschule Niederrhein, GERMANY
T191.h	DYNAMIC ORGAN-ON-A-CHIP FABRICATION USING DIGITAL PHOTOMASK
	Terry Ching ^{1,2} , Nina Shu-Yung Chang ¹ , Yi-Chin Toh ³ , and Michinao Hashimoto ¹
	¹ Singapore University of Technology and Design, SINGAPORE,
	² National University of Singapore, SINGAPORE, and
	³ Queensland University of Technology, AUSTRALIA
T192.h	EXPLORING MICROBE-INDUCED GUT DISEASE AND THERAPEUTICS
	WITH A GUT MICROBIOME-ON-A CHIP
	Jeeyeon Lee, Nishanth Menon, and Chwee Teck Lim
	National University of Singapore, SINGAPORE
T193.h	LUNG-ON-CHIP FOR THE STUDIES OF TUMOR HETEROGENEITY AND TARGETED THERAPY TESTS
	Yu-Che Chueh ¹ , Yi-Ting Ke ¹ , Kang-Yun Lee ² ,
	Wei-Lun Sun ³ , and Cheng-Hsien Liu ¹
	¹ National Tsing Hua University, TAIWAN, ² Taipei Medical University,
	TAIWAN, and ³ Pythia Biotech Ltd, TAIWAN
T194.h	MICROFLUIDIC PERFUSION CULTURE DEVICE THAT APPLIES MULTIPLE DEGREES OF SHEAR STRESS AND VARIOUS FLOW TYPES
	Hayate Yamamoto ¹ , Jumpei Muramatsu ¹ , Shigenori Miura ² ,
	and Hiroaki Onoe1
	¹ Keio University, JAPAN and ² University of Tokyo, JAPAN
T195.h	MONITORING BRAIN ACTIVITY WITH ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY
	Shadi Karimi ^{1,2} , Jasmina Casals Terre ¹ , and Michael Krieg ²
	¹ Universitat Politecnica Catalunya, SPAIN and
	² Institute of Photonic Sciences, SPAIN
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

POSTER PRESENTATIONS

T196.h POLYSTYRENE LUNG-ON-A-CHIP MODEL FOR OXYGEN METABOLISM STUDIES

Pim de Haan¹, Jean-Paul S.H. Mulder¹, Ruby E.H. Karsten¹, Monieb A.M. Ahmed¹, Maud Pijnenburg², Anika Nagelkerke¹, Irene H. Heijink², and Elisabeth Verpoorte¹ ¹University of Groningen, NETHERLANDS and ²University Medical Center Groningen, NETHERLANDS

T197.h TAPERED MICROSTEPS IN MICROCHANNELS FOR BUILDING THREE-DIMENSIONAL UNIDIRECTIONAL NEURAL NETWORKS Sanshiro Yanagawa¹, Midori Kato-Negishi², and Hiroaki Onoe¹ ¹ Keio University, JAPAN and ² Musashino University, JAPAN

W188.h A NOVEL SILICON MESH MEMBRANE AS A SCAFFOLD FOR ORGAN-ON-CHIP APPLICATIONS

Mariia Zakharova¹, Mar Cóndor², Sohail F. Shaikh², Aaron Delahanty², Dries Braeken², Andries D. van der Meer¹, and Loes I. Segerink¹ ¹ University of Twente, NETHERLANDS and ² Interuniversity Microelectronics Centre, BELGIUM

W189.h DEVELOPMENT OF A BREAST CANCER MICROENVIRONMENT PLATFORM FOR ANTI-CANCER DRUG SCREENING Ki-Hwan Nam and HyeMi Kim Korea Basic Science Institute, KOREA

W190.h ENHANCING THE ENRICHMENT OF WHITE BLOOD CELLS IN A SIZE-BASED SEPARATION MICROFLUIDIC DEVICE WITH A RECTANGULAR CHANNEL

Dhiren Mohapatra, Rahul Purwar, and Amit Agrawal Indian Institute of Technology Bombay, INDIA

W191.h HIGH-THROUGHPUT ORGAN-ON-A-CHIP PLATFORM FOR OSTEOARTHRITIS MODELING AND BIOMARKER DETECTION Aldeliane Maria Da Silva¹, Heidi Hannula¹, Muthusamy Saranya¹, Tuan Nguyen², Sebastien Mosser², Prateek Singh², Ali Mobasheri¹, and Gabriela S. Lorite¹ ¹University of Oulu, FINLAND and ²Finnadvance, FINLAND

W192.h MAGNETICALLY-ASSEMBLED ARRAYS OF MICROVASCULAR NETWORKS ON CHIP

Katarzyna Rojek¹, Antoni Wrzos², Stanisław Żukowski², Michał Bogdan¹, Maciej Lisicki², Piotr Szymczak², and Jan Guzowski¹ ¹*Polish Academy of Sciences, POLAND and* ²*University of Warsaw, POLAND*

0 V

W193.h MICROFLUIDIC-BASED ISOLATION AND ANALYSIS OF CIRCULATING TUMOR CELLS FOR MONITORING THERAPY EFFICACY IN PANCREATIC DUCTAL ADENOCARCINOMA PATIENTS Malgorzata A. Witek^{1,2}, Ian M. Freed¹, Anup Kasi², Oluwadamilola Fateru¹, Mengjia Hu², Nyla Weatherington¹,

Harsh Pathak², Stephen Hyter², Mateusz L. Hupert³,
 Prabhakar Chalise², Andrew K. Godwin², and Steven A. Soper^{1,2}
 ¹University of Kansas, USA, ²University of Kansas Medical Center,
 USA, and ³Biofluidica, Inc., USA

W194.h	NOVEL LIQUID BASED OXYGEN ISOLATION TECHNOLOGY FOR SINGLE CELL SCREENING FOR MITOCHONDRIAL DISEASES
	Shruti Mankar, Abhishek Kumarranjan, Kunpeng Cai,
	and Kentaro Shirai
	Sysmex Corporation, JAPAN

W195.h PUMPLESS FLUIDIC DEVICE FOR THE CULTURE OF MECHANOSENSITIVE CELLS UNDER UNIDIRECTIONAL RECIRCULATING FLUIDIC FLOW

Eun-Jin Lee^{1,2} and Mandy B. Esch² ¹University of Maryland, USA and ²National Institute of Standards and Technology (NIST), USA

Diagnostics, Drug Testing & Personalized Medicine

M198.h A SAMPLE-TO-ANSWER MICROFLUIDIC SYSTEM FOR NAKED-EYE DETECTION OF HEPATITIS C RNA USING IMMISCIBLE PHASE EXTRACTION COUPLED WITH ISOTHERMAL AMPLIFICATION Mohammad N. Abo-Zeid^{1,2}, Bongkot Ngamsom¹, Alexander Iles³, Nicole Pamme³, Cheryl Walter¹, and John Greenman¹ ¹University of Hull, UK, ²Assiut University, EGYPT, and ³Stockholm University, SWEDEN

M199.h ANALYTICAL PANEL BASED ON SPRI BIOSENSORS FOR QUANTIFICATION OF SELECTED POTENTIAL BRAIN GLIOMA BIOMARKERS

Lukasz Oldak^{1,2} and Ewa Gorodkiewicz^{1,2} ¹University of Bialystok, POLAND and ²Biomarkilo Sp. z o.o., POLAND

M200.h DEVELOPMENT OF A PIPELINE TO STREAMLINE DESIGN OF CRISPR-BASED DIAGNOSTIC TOOLS FOR THE DIFFERENTIATION OF SARS-COV-2 VARIANTS

Gabriel Lamothe¹, Julie Carbonneau¹, Charles Joly-Beauparlant¹, Thierry Vincent¹, Patrik Quessy², Anthony Guedon², Gary Kobinger³, Jean-François Lemay², Guy Boivin¹, Arnaud Droit¹, Nathalie Turgeon¹, and Jacques P. Tremblay¹ ¹Laval University, CANADA, ²CNETE, Inc., CANADA, and

³University of Texas Medical Branch, USA

M201.h HIGH-PERFORMANCE MICROFLUIDIC DNA EXTRACTOR BASED ON OPTIMIZED EXCITATION VOLTAGE AND 3D OUT-OF-PLANE CAVITATION MICROSTREAMING

Sofonias N. Kedir, Bhargav K. Pullagura, Abdi M. Kaba, and Dohyun Kim *Myongji University, KOREA*

M202.h PROTEIN DIGESTION BY THIN-LAYER NANOFLUIDIC CHANNELS Yu-Ting Hung¹, Kyojiro Morikawa^{1,2,3}, Hai Linh Tran¹, Chihchen Chen¹, and Takehiko Kitamori^{1,3,4} ¹National Tsing Hua University, TAIWAN, ²University of Tokyo, JAPAN, ³Kanagawa Institute of Industrial Science and Technology, JAPAN, and ⁴Lund University, SWEDEN

T198.h ACOUSTIC TRAPPING BASED HIGH THROUGHPUT ISOLATION AND CHARACTERIZATION OF PATHOGEN ACTIVATED PLATELET DERIVED EXTRACELLULAR VESICLES FROM PLASMA Axel Broman, Frida Palm, Genevieve Marcoux, John Semple, Thomas Laurell, Johan Malmström, and Oonagh Shannon Lund University, SWEDEN

SNO

PRESENTATIO

LATE NEWS POSTER PRESENTATIONS

T199.h	CENTRIFUGE FREE IMMUNE CELL RADIOLABELING ACHIEVED USING ACOUSTOPHORESIS METHODS
	Stephen Adler ¹ , Emma Stevenson ² , Noriko Sato ³ ,
	Julia Alsved ⁴ , and Peter Choyke ³
	¹ Frederick National Laboratory for Cancer Research, USA, ² University of Alabama, USA, ³ National Cancer Institute, USA,
	and ⁴ AcouSort AB, SWEDEN
T200.h	FILTER-IN-CENTRIFUGE SEPARATION OF LOW-CONCENTRATION
	BACTERIA FROM BLOOD
	Mohammad Osaid, Kaiyang Zeng, and Wouter van der Wijngaart <i>KTH Royal Institute of Technology, SWEDEN</i>
T201.h	INTEGRATED MICROFLUIDIC DEVICE FOR RAPID MIXING, LOW Consumption and fast dispensing for applications In time-resolved cryogenic electron microscopy
	Stefania Torino ^{1,2} , Mugdha K. Dhurandhar ^{1,2} ,
	and Rouslan G. Efremov ^{1,2}
	¹ Vlaams Instituut voor Biotechnologie, BELGIUM and ² VUB - Vrije Universiteit Brussel, BELGIUM
T202.h	TUMOR MICROENVIRONMENT LABCHIP INTEGRATING
	DIELECTROPHORESIS FOR HIPEC APPLICATIONS
	Chia-Peng Wang ¹ , Chih-Yung Hsu ¹ , Mao-Chih Hsieh ² ,
	Yu-Ting Tai ² , Jen-Tsan Ashley Chi ³ , Kang-Yun Lee ⁴ , Wei-Lun Sun ⁵ , and Cheng-Hsien Liu ¹
	¹ National Tsing Hua University, TAIWAN, ² Taipei Municipal Wanfang
	Hospital, TAIWAN, ³ Duke University, USA, ⁴ Taipei Medical University, TAIWAN, and ⁵ Pythia Biotech Ltd, TAIWAN
W196.h	A MICROFLUIDIC DEVICE FOR ISOLATION AND QUANTITATION OF HEPATOCYTE-SECRETED EXTRACELLULAR VESICLES AND MONITORING THEIR EXOSOMAL ENZYME ACTIVITIES ON-CHIP Ehsanollah Moradi, Päivi Järvinen, Markus Haapala,
	and Tiina Sikanen
	University of Helsinki, FINLAND
W197.h	ADVANCING CARDIOTOXICITY ASSESSMENT: SCADA PLATFORM FOR DRUG SCREENING OF HIPSC-DERIVED CARDIOMYOCYTES Alba Calatayud-Sanchez ¹ , Pilar Montero-Calle ² ,
	Fernando Benito-Lopez ¹ , Manuel M. Mazo ² ,
	and Lourdes Basabe-Desmonts ^{1,3}
	¹ University of the Basque Country, SPAIN, ² University of Navarra, SPAIN,
	and ³ Basque Foundation for Science, SPAIN
W198.h	CHARACTERIZATION OF A 3D PRINTED MICROFLUIDIC CHIP FOR LOCALIZED AND SUSTAINED STIMULATION IN
	HIPPOCAMPAL SLICES
	Colby E. Witt, Maria Kristendotter, Lauren M. Delong,
	and Ashley E. Ross University of Cincinnati, USA
W199.h	FREEZE-DRYING OF IMMOBILIZED HUMAN LIVER MICROSOMES
	liro Rautsola ¹ , Markus Haapala ¹ , Leo Huttunen ¹ ,
	Ossi Korhonen ² , and Tiina Sikanen ¹
	¹ University of Helsinki, FINLAND and ² University of Eastern
	Finland, FINLAND
	117

117

W200.h POINT-OF-CARE VISCOMETER FOR PORTABLE COAGULATION MEASUREMENT Mina Stefanovic, Alexandros Sklavounos, Qimo Huang, Lenny Chen, Anthony Yong, and Aaron Wheeler

University of Toronto, CANADA

Fundamentals in Microfluidics and Nanofluidics

M203.h DEVELOPING MINIATURIZED OPTICAL DETECTORS INTEGRATED ON CENTRIFUGAL LAB ON DISC PLATFORMS FOR COLOR-DEPENDENT DETECTIONS

Vahid Kordzadeh-Kermani¹, Maryam Vahid², Seyed Nezameddin Ashrafizadeh¹, Sergio O. Martinez-Chapa³, Marc J. Madou⁴, and Masoud Madadelahi³

¹Iran University of Science and Technology, IRAN, ²Isfahan University of Technology, IRAN, ³Tecnologico de Monterrey, MEXICO, and ⁴University of California, Irvine, USA

M204.h EVAPORATION OF BACTERIA-LADEN SURROGATE RESPIRATORY FLUID DROPLETS: SESSILE MODE V/S LEVITATED MODE Amey Nitin Agharkar, Dipasree Hajra, Prasenjit Kabi, Dipshikha Chakravortty, Saptarshi Basu, and Vivek Jaiswal Indian Institute of Science, INDIA

M205.h HIGH-THROUGHPUT NUCLEIC ACID CYTOMETRY WITH HYDROLYSIS-PROBE PCR IN POLYACRYLAMIDE BEADS Rodrigo Cotrim Chaves and Aaron Streets University of California, Berkeley, USA

M206.h PERMEATION MECHANISM OF IMIDAZOLIUM-BASED ILS INTO CU3(BTC)2 SINGLE CRYSTAL Ichiro Ohira, Yumeng Zheng, and Kentaro Kinoshita Tokyo University of Science, JAPAN

M207.h RAPID, COST-EFFECTIVE CENTRIFUGAL MICROFLUIDIC DISC FOR AUTOMATED NANOLITER VOLUME ASSAY OPTIMIZATION Renna L. Nouwairi, Carter K. Jones, Maura E. Charette, Emilee Holmquist, Zoey Golabek, and James P. Landers University of Virginia, USA

M208.h SHEATH FLOW ASSISTED ELECTRO-HYDRODYNAMIC LATERAL PARTICLE MIGRATION AND SEPARATION Seyedamirhosein Abdorahimzadeh, Feby W. Pratiwi, Seppo J. Vainio, Henrikki Liimatainen, and Caglar Elbuken University of Oulu, FINLAND

T203.h DIELECTROPHORETIC MANIPULATION OF PREOSTEOBLASTIC CELLS IN PRESENCE OF A SILICA-BASED ALLOPLASTIC SCAFFOLD IN A MICROFLUIDIC FLOW CELL DEVICE Lilliam V. Trejos-Soto¹, Abraham Valerio-Aguilar^{2,3}, Guido A. Ramírez-González¹, Sergio A. Paniagua⁴, Jorge Oviedo-Quirós^{2,5}, Alfonso García-Piñeres², Carolina Centeno-Cerdas¹, and Leonardo Lesser-Rojas² ¹Costa Rica Institute of Technology (TEC), COSTA RICA, ²University of Costa Rica, COSTA RICA, ³Kent State University, USA, ⁴National Center for High Technology (CENAT), COSTA RICA, and ⁵National Children's Hospital, COSTA RICA

POSTER PRESENTATIONS

LATE NEWS POSTER PRESENTATIONS

FLOW RATE-INDEPENDENT MULTISCALE MICROFLUIDIC SYSTEM AND ITS APPLICATIONS FOR THE CAPTURE AND STUDY OF CTCS Jing Yan ¹ and Jerome Charmet ² ¹ University of Cambridge, UK, CHINA and ² University of Applied Sciences Western Switzerland, SWITZERLAND
INTEGRATED MICROVALVES FOR AUTONOMOUS ON-CHIP FLOW CONTROL Mohammed Shahadha ¹ , Denise Gruner ^{1,2} , Anthony Beck ¹ , Andreas Voigt ¹ , Markus Friedemann ² , Paula Kalenczuk ¹ , Stefan Grünzner ¹ , Franziska Obst ¹ , Uwe Marschner ¹ , Mario Menschikowski ² , and Andreas Richter ¹ ¹ Technische Universität Dresden, GERMANY and ² University Hospital Carl Gustav Carus Dresden, GERMANY
PLATFORM BASED ON ACTIVE-MATRIX DIGITAL MICROFLUIDICS FOR HIGH-THROUGHPUT SINGLE-CELL PROCESSING AND SINGLE-CELL PROTEOMICS Siyi Hu ^{1,2} ¹ Chinese Academy of Sciences, CHINA and ² Guangdong ACXEL Micro & Nano Tech Co., Ltd, CHINA
REMOVAL OF DMSO FROM CELL SAMPLES USING ACOUSTIC TRAPPING Albin Hermansson, Anke Urbansky, and Mikael Evander AcouSort AB, SWEDEN
AN INTEGRATED MULTIPLEXED CHIP FOR DIGITAL DROPLET LOOP-MEDIATED ISOTHERMAL AMPLIFICATION Paul Gaube, Elfi Töpfer, and Claudia Gärtner microfluidic ChipShop GmbH, GERMANY
EFFICIENT OIL MICRODROPLET COLLECTION USING SPACE-FILLING OPEN MICROFLUIDIC CHANNELS WITH OLEOPHILIC AND OLEOPHOBIC SURFACES Yusho Segawa ¹ , Kentaro Kinoshita ¹ , and Hiroyuki Kai ^{1,2} ¹ Tokyo University of Science, JAPAN and ² Toyo University, JAPAN
FREEZE FRAME IMAGING- A NEW IMAGING TECHNIQUE FOR FAST DYNAMICS PARTICLE TRACKING Ola Jakobsson ¹ , Massimiliano Rossi ² , Christian Cierpka ³ ,
and Per Augustsson ¹ ¹ Lund University, SWEDEN, ² University of Bologna, ITALY, and ³ Technische Universität Ilmenau, GERMANY
NUMERICAL SIMULATION FOR COMPARISON OF MIXING EFFICIENCY IN SERPENTINE CHANNELS WITH DIFFERENT FLOW DIRECTIONS Hyeonji Hong ¹ , Jaehwan Jeong ² , II Doh ¹ , and Eunseop Yeom ² ¹ Korea Research Institute of Standards and Science, KOREA and ² Pusan National University, KOREA
PUMP-FREE UNIDIRECTIONAL COLLOID TRANSPORT SYSTEM BASED ON LIGHT-DRIVEN SELF-ASSEMBLY IN WEDGE-SHAPED GAP Natsumi Watanabe and Hiroaki Onoe Keio University, JAPAN

W206.h REUSABLE WIRE ELECTRODE INTERFACE FOR DROPLET MERGING WITH A PULSE-WIDTH FLOW MODULATION CONTROL SYSTEM TO SIMPLIFY DROPLET-BASED MICROFLUIDIC TISSUE SAMPLING Andresa Bresler Bezerra, Md Mohibullah, and Christopher J. Easley Auburn University, USA

Integrated Microfluidic Platforms

M209.h DEVELOPMENT OF MULTI-MATERIAL 3D-PRINTED MICROFLUIDIC CONNECTORS FOR NANOPARTICLE SYNTHESIS Muhammad Mubashar Saeed, David Kinahan, Nicholas Dunne, Eadaoin Carthy, and Srishti Agarwal Dublin City University, IRELAND

M210.h MICROFLUIDIC DISTILLATION DEVICE WITH CONTROLLING GAS AND LIQUID FILM FLOW

Chengyu Hsu¹, Kyojiro Morikawa^{1,2,3}, Satoru Matsuoka⁴, Morihito Saito⁴, Masaharu Ueno⁵, Chihchen Chen¹, and Takehiko Kitamori^{1,3,6}

¹National Tsing Hua University, TAIWAN, ²University of Tokyo, JAPAN, ³Kanagawa Institute of Industrial Science and Technology, JAPAN, ⁴Daicel Corporation, JAPAN, ⁵Tokushima University, JAPAN, and ⁶Lund University, SWEDEN

T208.h A PORTABLE HEATING AND COOLING TEMPERATURE CONTROLLER FOR ORGAN CHIPS

Shiemaa A.M. Elhassan¹, Gurhan Özkayar¹, Joost Lötters^{1,2}, Nicolaas J.H. Raat³, and Murali K. Ghatkesar¹ ¹Delft University of Technology, NETHERLANDS, ²Bronkhorst B.V., NETHERLANDS, and ³Erasmus Medical Centre, NETHERLANDS

T209.h ELECTROKINETIC-ASSISTED CONTINUOUS SEPARATION OF CATIONIC DYES USING ANION-EXCHANGEABLE MULTISCALE-POROUS CHANNELS

Woonjae Choi and Geunbae Lim Pohang University of Science and Technology, KOREA

T210.h PRECISE SYNTHESIS OF COPOLYMERS USING SERIALLY CONNECTED GLASS MICROFLUIDIC CHIPS

Adelina Smirnova¹, Hisashi Shimizu¹, Yu Sugimoto¹, Kyojiro Morikawa^{1,2}, Takahiro Aratani³, Atsushi Mori³, Makoto Ouchi⁴, Chihchen Chen², and Takehiko Kitamori^{1,2,5} ¹*University of Tokyo, JAPAN,* ²*National Tsing Hua University, TAIWAN,* ³*Daicel Corporation, JAPAN,* ⁴*Kyoto University, JAPAN, and* ⁵*Lund University, SWEDEN*

W207.h A SEMI-AUTOMATED MONODISPERSITY-TUNABLE MAGNETIC PLATFORM FOR ON-CHIP IMMUNOMAGNETIC SEPARATION OF BACTERIA

Didem Rodoplu Solovchuk¹, Shou-Yu Ma¹, Jing-Yi Yang¹, Hung-Yu Chien¹, and Chia-Hsien Hsu^{1,2,3} ¹National Health Research Institutes, TAIWAN, ²National Tsing Hua University, TAIWAN, and ³National Chung Hsing University, TAIWAN

W208.h FLUIDIC CONTROL OF AN INTEGRATED AND MODULAR SYSTEM FOR DIAGNOSING ISCHEMIC STROKE

Katie Childers¹, Harshani Wijerathne¹, Sheila de Melo Barros¹, Favour Nwachukwu¹, Mateusz L. Hupert², Farhad Shiri¹, Malgorzata A. Witek¹, Daniel S. Park³, Alison Baird⁴, and Steven A. Soper¹ ¹University of Kansas, USA, ²Biofluidica, Inc, USA, ³Louisiana State University, USA, and ⁴SUNY Downstate Medical Center, USA

W209.h PROTEIN-PROTEIN INTERACTION MEASUREMENT USING PARTICLE DIFFUSOMETRY IN A LOW-VOLUME MICROFLUIDIC CHIP Hui Ma, Aiswarya A. Ramanujam, Jacqueline C. Linnes, and Tamara L. Kinzer-Ursem Purdue University, USA

Micro- and Nanoengineering

M211.h A NEW POLYMERIC, BIODEGRADABLE, AND MINIMALLY INVASIVE GLAUCOMA IMPLANT Inês C.F. Pereira Eindhoven University of Technology, NETHERLANDS

- M212.h IMPROVING INTERFACIAL ADHESION OF HYDROGEL MATRICES TO PDMS-BASED MICROFLUIDIC PLATFORMS Yu Na, Utku Devamoglu, Séverine Le Gac, and Julieta I. Paez
 - University of Twente, NETHERLANDS
- M213.h LOW-COST MICROFLUIDIC PDMS MOLDS BASED ON PCB SILKSCREEN FOR EDUCATIONAL AND RAPID PROTOTYPING USE Marco Carminati Politecnico di Milano, ITALY

M214.h THE PREPARATION OF SERS SUBSTRATE USING ULTRASONIC-ASSISTED FABRICATION METHOD FOR THE DETECTION OF HUMAN IGG Aysen Gumustas^{1,2}, Hilal Torul³, Mert Kerem Ulku⁴, M.A. Sahir Arikan⁴, Ugur Tamer^{1,3}, and Ender Yildirim^{1,4} ¹ METU MEMS Center, TURKEY, ²Ankara University, TURKEY, ³ Gazi University, TURKEY, and ⁴ Middle East Technical University, TURKEY

T211.h AN INTEGRATED BIOSENSOR FOR AFLATOXIN B1 DETECTION Yi Liu, Cong Lin, and Jiahao Miao Peking University, CHINA

T212.h FABRICATION OF WARP-RESISTANT MICROMOLDS BY DIGITAL-LIGHT-PROCESSING (DLP) PRINTING Nie Xiaolei, Nidhi Nagaraju, and Michinao Hashimoto Singapore University of Technology and Design, SINGAPORE

T213.h MICROFLUIDIC FRONT DYNAMICS FOR THE CHARACTERIZATION OF PUMPS FOR LONG-TERM AUTONOMOUS MICROSYSTEMS Yara Alvarez-Braña¹, Andreu Benavent-Claro², Fernando Benito-Lopez¹, Aurora Hernandez-Machado², and Lourdes Basabe-Desmonts¹ ¹University of the Basque Country, SPAIN and ²University of Barcelona, SPAIN

STUDYING AND IMPROVING THE CYTOCOMPATIBILITY T214.h **OF SLA RESINS** Bastien Venzac³, Sem Bertelink¹, Ludivine Laffont², Isabelle Grasseau², Karine Reynaud², Marie Saint-Dizier², and Séverine Le Gac¹ ¹University of Twente, NETHERLANDS, ²PRC - INRAE, FRANCE, and 3LAAS - CNRS. FRANCE DEVELOPING A BACKSIDE PHOTOLITHOGRAPHY METHOD FOR W210.h CREATING MICROFLUIDIC BLOOD OXYGENATORS WITH ROUNDED CROSS-SECTIONS AND HIERARCHICAL BLOOD VASCULAR NETWORKS Neda Saraei and Ravi Selvaganapathy McMaster University, CANADA W211.h IN-LINE QUALITY CONTROL SYSTEM FOR THE STATE-OF-THE-ART ROLL-TO-ROLL MASS-MANUFACTURING PROCESS FOR VERSATILE MICROFLUIDIC SYSTEMS Nastasia Okulova¹, Victor J. Tolstrup¹, Conor O'Sullivan¹,

Anja Haase², Andoni Rodriguez³, Andreas Flanschger³, Alvaro Conde⁴, Maciej Skolimowski⁴, Veronica Mora Sanz⁵, Nerea Briz Iceta⁵, and Jan Kafka¹

¹Inmold A/S, DENMARK, ²JOANNEUM RESEARCH, AUSTRIA, ³bionic surface technologies GmbH, AUSTRIA, ⁴Micronit Micro Technologies, NETHERLANDS, and ⁵Tecnalia Research and Innovation, SPAIN

W212.h NOVEL MAGNETIC CULTURE SUBSTRATES: POLYCARBONATE AND POLYDIMETHYLSILOXANE MEMBRANES FOR STUDYING CARDIAC CELL RESPONSES

Oliwia Tadko¹, Dominik Kołodziejek¹, Zuzanna Żółtowska¹, Natalia Wasiak¹, Marcin Drozd^{1,2}, and Elżbieta Jastrzębska^{1,2} ¹ Warsaw University of Technology, POLAND and ² Center of Advanced Materials and Technologies, POLAND

Other Applications of Microfluidics

M215.h IMAGE-TO-HYDRAULIC RESISTANCE: PRE-TRAINED ARTIFICIAL NEURAL NETWORK MODEL TO OVERCOME HAGEN-POISEUILLE EQUATIONS LIMITATIONS

Juan Sandubete-López^{1,2}, Patrick Finn¹, José L. Risco-Martín², and Alexander H. McMillan¹ ¹Elvesys Microfluidic Innovation Center, FRANCE and ²Universidad Complutense de Madrid, SPAIN

M216.h UTILIZING CHATGPT TO ASSIST CAD FOR MICROFLUIDIC DEVICES Brady L. Goenner, Matt D. Nelson, and Bruce K. Gale University of Utah, USA

T215.h THE AUTOMATION AND CHARACTERIZATION OF A MICROFLUIDIC ACOUSTIC LEVITATION SYSTEM FOR SYNCHROTRON SAMPLE DELIVERY

Eleanor Hedges¹, Danny Axford², Davide Crivelli², Emilio Perez Juarez², Gabriel Leen³, Victoria Baker⁴, Florimond Gueniat⁴, and Peter Docker² ¹University of Shefield, UK, ²Diamond Light Source, UK, ³University of Limerick, IRELAND, and ⁴Birminham City University, UK

W213.h	ICE-NUCLEATING PARTICLE ACTIVITY IN RIVER OUTFLOWS Mark D. Tarn ¹ , Katherine H. Bastin ¹ , Rachel E. Sipler ² ,
	and Benjamin J. Murray ¹ ¹ University of Leeds, UK and ² Bigelow Laboratory for Ocean Sciences, USA

W214.h TNT PAPER-BASED SENSOR WITH ENHANCED SENSITIVITY Viktoriia Lastivka¹, Piotr Kasprzak², Izabela Mazur², Piotr Baran², Wawrzyniec Pniewski², Ilona Grabowska-Jadach¹, Michal Chudy¹,

Katarzyna Tokarska³, Kamil Zukowski³, and Artur Dybko¹ ¹Warsaw University of Technology, POLAND, ²Military Institute of Armament Technology, POLAND, and ³CEZAMAT, POLAND

Sensors and Detection Technologies

M217.h 3-D PRINTED MICROFLUIDIC DEVICES FOR IN-FIELD COLOURIMETRIC MEASUREMENT OF SOIL MACRONUTRIENTS

Reuben Mah Han Yang¹, Fernando Maya Alejandro¹, Marcus Hardie¹, Richard Doyle¹, Lawrence Di Bella², Robert Milla³, and Michael Breadmore¹ ¹University of Tasmania, AUSTRALIA, ²Herbert Can Productivity Services Ltd, AUSTRALIA, and ³Burdekin Productivity Services, AUSTRALIA

M218.h FLUORESCENCE REPORTING COUPLED WITH AMPEROMETRIC SENSING USING A NON-POTENTIOSTAT-DRIVEN BIPOLAR ELECTRODE WITH MICROCHIP ELECTROPHORESIS Indika K. Warnakula¹, Manjula B. Wijesinghe², and Susan M. Lunte¹ ¹ University of Kansas, USA and ² University of Peradeniya, SRI LANKA

M219.h INVESTIGATIONS ON RECEPTOR LAYER COMPOSITION, QUALITY OF ELECTROCHEMICAL TRANSDUCERS GOLD SURFACE AND PREPARATION PROCEDURE OF BIOSENSOR DEDICATED TO CHOSEN SARS-COV-2 GENETIC MARKERS DETECTION Robert Ziółkowski, Jakub Krzemiński, Dominika Baran, Anna Szymczyk, and Elżbieta Malinowska Warsaw University of Technology, POLAND

M220.h PROOF OF PRINCIPLE HIGH SURFACE AREA MICROFLUIDIC BIOSENSOR BASED ON INTERLOCKED MICROPILLARS FOR EARLY CANCER DIAGNOSTICS

Gunita Paidere, Edmunds Zutis, Janis Cipa, Roberts Rimsa, Gatis Mozolevskis, and Andris Anspoks *University of Latvia, LATVIA*

T216.h DEVELOF BASED V Vinaya Vi ¹ Indian In Tachada

DEVELOPMENT OF A MICROFLUIDIC AIR-LIQUID INTERFACE BASED VISCOMETER FOR BIOLOGICAL APPLICATIONS

Vinaya Vinaya¹, Ayan Kumar², Stuti Maheshwari³, and Prosenjit Sen¹ ¹Indian Institute of Science, Bangalore, INDIA, ²Indian Institute of Technology, Kharaghpur, INDIA, and ³Texas A&M University, USA

T217.h FROM DESIGN TO PERFORMANCE: OPTIMIZING THE FABRICATION PROTOCOL AND FINE-TUNING THE PARAMETERS OF SOFT MICROFLUIDIC FORCE SENSORS

Wael Othman^{1,2} and Mohammad A. Qasaimeh^{1,2} ¹New York University Abu Dhabi, UAE and ²New York University, USA

- T218.h LAB-AROUND-FIBER FOR IMMUNOCAPTURE AND OPTICAL DETECTION OF ANTIMICROBIAL RESISTANCE MARKERS Fatima Flores-Galicia, Marine Poret, Camille Frangville, Alexandre Lerner, Hervé Volland, Guillaume Laffont, and Karla Perez-Toralla Paris-Saclay University, FRANCE
- T219.h TEMPERATURE MONITORING BY RELATIVE DIFFERENTIAL METHOD OF MOLECULAR TEMPERATURE PROBES FOR POINT-OF-CARE DIAGNOSTICS

Lauri K. Rannaste^{1,2}, Leena M. Hakalahti¹, and Jussi A. Hiltunen¹ ¹*VTT Technical Research Centre of Finland Ltd, FINLAND and* ²*University of Oulu, FINLAND*

- W215.h A MICROFLUIDIC PLATFORM FOR SELECTIVE ON-SITE ELECTROCHEMICAL IDENTIFICATION OF ILLICIT DRUGS Annemarijn Steijlen, Marc Parrilla, Robin Van Echelpoel, and Karolien De Wael Universiteit Antwerpen, BELGIUM
- W216.h ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS) FOR RAPID PATHOGEN DETECTION IN LAB-ON-A-DISC (LOAD) PLATFORM Eadaoin Carthyl^{1,2}, David Boyle^{1,2}, Kellie Adamson^{1,2}, Elaine Spain^{1,2}, and Robert J. Forster^{1,2} ¹Dublin City University, IRELAND and²National Centre for Sensor Research, IRELAND
- W217.h INTEGRATED POINT-OF-CARE MICROFLUIDIC DEVICE FOR MULTIPLEX QUANTITATIVE MONITORING OF VIRAL RESPIRATORY INFECTIONS AND IMMUNE RESPONSES WITH MOLECULARLY IMPRINTED POLYMERS Roozbeh Siavash Moakhar¹, Carolina del Real Mata¹, Mahsa Jalali¹, Tamer Abdel Fatah¹, Imman Isaac Hosseini¹, Sripadh Guptha Yedire¹, Houda Shafique¹, Sahar Sadat Mahshid², and Sara Mahshid¹ ¹McGill University, CANADA and ²Sunnybrook Health Sciences Centre, CANADA
- W218.h NOTEM: THE NEAR-FIELD OPTICAL TRANSMISSION ELECTRON MICROSCOPY FOR AN INNOVATIVE 'IN VIVO' PARALLEL IMAGING ON THE NANOMETRIC SCALE Krzysztof P. Grzelakowski NOTEM. POLAND

